Multicore Shared Memory Application Programming PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multicore Shared Memory Application Programming PDF full book. Access full book title Multicore Shared Memory Application Programming.

Shared Memory Application Programming

Shared Memory Application Programming
Author: Victor Alessandrini
Publisher: Morgan Kaufmann
Total Pages: 557
Release: 2015-11-06
Genre: Computers
ISBN: 0128038209

Download Shared Memory Application Programming Book in PDF, ePub and Kindle

Shared Memory Application Programming presents the key concepts and applications of parallel programming, in an accessible and engaging style applicable to developers across many domains. Multithreaded programming is today a core technology, at the basis of all software development projects in any branch of applied computer science. This book guides readers to develop insights about threaded programming and introduces two popular platforms for multicore development: OpenMP and Intel Threading Building Blocks (TBB). Author Victor Alessandrini leverages his rich experience to explain each platform’s design strategies, analyzing the focus and strengths underlying their often complementary capabilities, as well as their interoperability. The book is divided into two parts: the first develops the essential concepts of thread management and synchronization, discussing the way they are implemented in native multithreading libraries (Windows threads, Pthreads) as well as in the modern C++11 threads standard. The second provides an in-depth discussion of TBB and OpenMP including the latest features in OpenMP 4.0 extensions to ensure readers’ skills are fully up to date. Focus progressively shifts from traditional thread parallelism to modern task parallelism deployed by modern programming environments. Several chapter include examples drawn from a variety of disciplines, including molecular dynamics and image processing, with full source code and a software library incorporating a number of utilities that readers can adapt into their own projects. Designed to introduce threading and multicore programming to teach modern coding strategies for developers in applied computing Leverages author Victor Alessandrini's rich experience to explain each platform’s design strategies, analyzing the focus and strengths underlying their often complementary capabilities, as well as their interoperability Includes complete, up-to-date discussions of OpenMP 4.0 and TBB Based on the author’s training sessions, including information on source code and software libraries which can be repurposed


Multicore Shared Memory Application Programming

Multicore Shared Memory Application Programming
Author: Victor Alessandrini
Publisher: Wiley-ISTE
Total Pages: 448
Release: 2014-05-12
Genre: Computers
ISBN: 9781848216532

Download Multicore Shared Memory Application Programming Book in PDF, ePub and Kindle

This book provides a unified presentation of the basic concepts of shared memory application programming, underlining the universality of these concepts and discussing the way they are declined in major programming environments. The book focuses on the high level parallel and concurrency patterns that commonly occur in real applications, and explores useful programming idioms, pitfalls and best practices that are largely independent of the underlying programming environment.


Multicore Application Programming

Multicore Application Programming
Author: Darryl Gove
Publisher: Addison-Wesley Professional
Total Pages: 465
Release: 2011
Genre: Computers
ISBN: 0321711378

Download Multicore Application Programming Book in PDF, ePub and Kindle

Multicore Application Programming is a comprehensive, practical guide to high-performance multicore programming that any experienced developer can use.


Parallel Programming

Parallel Programming
Author: Thomas Rauber
Publisher: Springer Science & Business Media
Total Pages: 523
Release: 2013-06-13
Genre: Computers
ISBN: 3642378013

Download Parallel Programming Book in PDF, ePub and Kindle

Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. For this second edition, all chapters have been carefully revised. The chapter on architecture of parallel systems has been updated considerably, with a greater emphasis on the architecture of multicore systems and adding new material on the latest developments in computer architecture. Lastly, a completely new chapter on general-purpose GPUs and the corresponding programming techniques has been added. The main goal of the book is to present parallel programming techniques that can be used in many situations for a broad range of application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The material presented has been used for courses in parallel programming at different universities for many years.


Using OpenMP

Using OpenMP
Author: Barbara Chapman
Publisher: MIT Press
Total Pages: 378
Release: 2007-10-12
Genre: Computers
ISBN: 0262533022

Download Using OpenMP Book in PDF, ePub and Kindle

A comprehensive overview of OpenMP, the standard application programming interface for shared memory parallel computing—a reference for students and professionals. "I hope that readers will learn to use the full expressibility and power of OpenMP. This book should provide an excellent introduction to beginners, and the performance section should help those with some experience who want to push OpenMP to its limits." —from the foreword by David J. Kuck, Intel Fellow, Software and Solutions Group, and Director, Parallel and Distributed Solutions, Intel Corporation OpenMP, a portable programming interface for shared memory parallel computers, was adopted as an informal standard in 1997 by computer scientists who wanted a unified model on which to base programs for shared memory systems. OpenMP is now used by many software developers; it offers significant advantages over both hand-threading and MPI. Using OpenMP offers a comprehensive introduction to parallel programming concepts and a detailed overview of OpenMP. Using OpenMP discusses hardware developments, describes where OpenMP is applicable, and compares OpenMP to other programming interfaces for shared and distributed memory parallel architectures. It introduces the individual features of OpenMP, provides many source code examples that demonstrate the use and functionality of the language constructs, and offers tips on writing an efficient OpenMP program. It describes how to use OpenMP in full-scale applications to achieve high performance on large-scale architectures, discussing several case studies in detail, and offers in-depth troubleshooting advice. It explains how OpenMP is translated into explicitly multithreaded code, providing a valuable behind-the-scenes account of OpenMP program performance. Finally, Using OpenMP considers trends likely to influence OpenMP development, offering a glimpse of the possibilities of a future OpenMP 3.0 from the vantage point of the current OpenMP 2.5. With multicore computer use increasing, the need for a comprehensive introduction and overview of the standard interface is clear. Using OpenMP provides an essential reference not only for students at both undergraduate and graduate levels but also for professionals who intend to parallelize existing codes or develop new parallel programs for shared memory computer architectures.


Multicore Programming Using the ParC Language

Multicore Programming Using the ParC Language
Author: Yosi Ben-Asher
Publisher: Springer Science & Business Media
Total Pages: 285
Release: 2012-05-26
Genre: Computers
ISBN: 1447121643

Download Multicore Programming Using the ParC Language Book in PDF, ePub and Kindle

Multicore Programming Using the ParC Language discusses the principles of practical parallel programming using shared memory on multicore machines. It uses a simple yet powerful parallel dialect of C called ParC as the basic programming language. Designed to be used in an introductory course in parallel programming and covering basic and advanced concepts of parallel programming via ParC examples, the book combines a mixture of research directions, covering issues in parallel operating systems, and compilation techniques relevant for shared memory and multicore machines. Multicore Programming Using the ParC Language provides a firm basis for the ‘delicate art’ of creating efficient parallel programs. Students can exercise parallel programming using a simulation software, which is portable on PC/Unix multicore computers, to gain experience without requiring specialist hardware. Students can also help to cement their learning by completing the great many challenging and exciting exercises which accompany each chapter.


Fundamentals of Multicore Software Development

Fundamentals of Multicore Software Development
Author: Victor Pankratius
Publisher: CRC Press
Total Pages: 322
Release: 2011-12-12
Genre: Computers
ISBN: 1439812748

Download Fundamentals of Multicore Software Development Book in PDF, ePub and Kindle

With multicore processors now in every computer, server, and embedded device, the need for cost-effective, reliable parallel software has never been greater. By explaining key aspects of multicore programming, Fundamentals of Multicore Software Development helps software engineers understand parallel programming and master the multicore challenge.


The Art of Multiprocessor Programming, Revised Reprint

The Art of Multiprocessor Programming, Revised Reprint
Author: Maurice Herlihy
Publisher: Elsevier
Total Pages: 537
Release: 2012-06-25
Genre: Computers
ISBN: 0123977959

Download The Art of Multiprocessor Programming, Revised Reprint Book in PDF, ePub and Kindle

Revised and updated with improvements conceived in parallel programming courses, The Art of Multiprocessor Programming is an authoritative guide to multicore programming. It introduces a higher level set of software development skills than that needed for efficient single-core programming. This book provides comprehensive coverage of the new principles, algorithms, and tools necessary for effective multiprocessor programming. Students and professionals alike will benefit from thorough coverage of key multiprocessor programming issues. This revised edition incorporates much-demanded updates throughout the book, based on feedback and corrections reported from classrooms since 2008 Learn the fundamentals of programming multiple threads accessing shared memory Explore mainstream concurrent data structures and the key elements of their design, as well as synchronization techniques from simple locks to transactional memory systems Visit the companion site and download source code, example Java programs, and materials to support and enhance the learning experience


Shared-Memory Parallelism Can be Simple, Fast, and Scalable

Shared-Memory Parallelism Can be Simple, Fast, and Scalable
Author: Julian Shun
Publisher: Morgan & Claypool
Total Pages: 445
Release: 2017-06-01
Genre: Computers
ISBN: 1970001895

Download Shared-Memory Parallelism Can be Simple, Fast, and Scalable Book in PDF, ePub and Kindle

Parallelism is the key to achieving high performance in computing. However, writing efficient and scalable parallel programs is notoriously difficult, and often requires significant expertise. To address this challenge, it is crucial to provide programmers with high-level tools to enable them to develop solutions easily, and at the same time emphasize the theoretical and practical aspects of algorithm design to allow the solutions developed to run efficiently under many different settings. This thesis addresses this challenge using a three-pronged approach consisting of the design of shared-memory programming techniques, frameworks, and algorithms for important problems in computing. The thesis provides evidence that with appropriate programming techniques, frameworks, and algorithms, shared-memory programs can be simple, fast, and scalable, both in theory and in practice. The results developed in this thesis serve to ease the transition into the multicore era. The first part of this thesis introduces tools and techniques for deterministic parallel programming, including means for encapsulating nondeterminism via powerful commutative building blocks, as well as a novel framework for executing sequential iterative loops in parallel, which lead to deterministic parallel algorithms that are efficient both in theory and in practice. The second part of this thesis introduces Ligra, the first high-level shared memory framework for parallel graph traversal algorithms. The framework allows programmers to express graph traversal algorithms using very short and concise code, delivers performance competitive with that of highly-optimized code, and is up to orders of magnitude faster than existing systems designed for distributed memory. This part of the thesis also introduces Ligra+, which extends Ligra with graph compression techniques to reduce space usage and improve parallel performance at the same time, and is also the first graph processing system to support in-memory graph compression. The third and fourth parts of this thesis bridge the gap between theory and practice in parallel algorithm design by introducing the first algorithms for a variety of important problems on graphs and strings that are efficient both in theory and in practice. For example, the thesis develops the first linear-work and polylogarithmic-depth algorithms for suffix tree construction and graph connectivity that are also practical, as well as a work-efficient, polylogarithmic-depth, and cache-efficient shared-memory algorithm for triangle computations that achieves a 2–5x speedup over the best existing algorithms on 40 cores. This is a revised version of the thesis that won the 2015 ACM Doctoral Dissertation Award.


Performance Engineering of Hybrid Message Passing + Shared Memory Programming on Multi-core Clusters

Performance Engineering of Hybrid Message Passing + Shared Memory Programming on Multi-core Clusters
Author: Martin James Chorley
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:

Download Performance Engineering of Hybrid Message Passing + Shared Memory Programming on Multi-core Clusters Book in PDF, ePub and Kindle

The hybrid message passing + shared memory programming model combines two parallel programming styles within the same application in an effort to improve the performance and efficiency of parallel codes on modern multi-core clusters. This thesis presents a performance study of this model as it applies to two Molecular Dynamics (MD) applications. Both a large scale production MD code and a smaller scale example MD code have been adapted from existing message passing versions by adding shared memory parallelism to create hybrid message passing + shared memory applications. The performance of these hybrid applications has been investigated on different multi-core clusters and compared with the original pure message passing codes. This performance analysis reveals that the hybrid message passing + shared memory model provides performance improvements under some conditions, while the pure message passing model provides better performance in others. Typically, when running on small numbers of cores the pure message passing model provides better performance than the hybrid message passing + shared memory model, as hybrid performance suffers due to increased overheads from the use of shared memory constructs. However, when running on large numbers of cores the hybrid model performs better as these shared memory overheads are minimised while the pure message passing code suffers from increased communication overhead. These results depend on the interconnect used. Hybrid message passing + shared memory molecular dynamics codes are shown to exhibit different communication profiles from their pure message passing versions and this is revealed to be a large factor in the performance difference between pure message passing and hybrid message passing + shared memory codes. An extension of this result shows that the choice of interconnection fabric used in a multi-core cluster has a large impact on the performance difference between the pure message passing and the hybrid code. The factors affecting the performance of the applications have been analytically examined in an effort to describe, generalise and predict the performance of both the pure message passing and hybrid message passing + shared memory codes.