Multi Scale Computational Fluid Dynamics With Interfaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multi Scale Computational Fluid Dynamics With Interfaces PDF full book. Access full book title Multi Scale Computational Fluid Dynamics With Interfaces.

Multi-scale Computational Fluid Dynamics with Interfaces

Multi-scale Computational Fluid Dynamics with Interfaces
Author: Jianghui Chao
Publisher:
Total Pages:
Release: 2006
Genre:
ISBN:

Download Multi-scale Computational Fluid Dynamics with Interfaces Book in PDF, ePub and Kindle

In order to suppress numerical instabilities associated with the presence of the interface, the following approaches were investigated: (i) a new surface tension formulation originated from the diffusion interface method was used to remove unphysical pressure wiggles across interfaces; (ii) a filter scheme was used in numerical gradient calculations to maintain monotonic property variations; (iii) a volume-correction procedure was devised. The performance of the improved LBE model was evaluated using the Rayleigh-Taylor instability problem, stationary bubble under force equilibrium, capillary waves, and rising bubbles. The computational results demonstrated that this LBE two-phase model is more robust than those reported in the literature, capable of treating larger density ratio up to order O(102), while confining the interface thickness within 5-6 grids.


Multiscale Methods in Computational Mechanics

Multiscale Methods in Computational Mechanics
Author: René de Borst
Publisher: Springer Science & Business Media
Total Pages: 451
Release: 2010-10-09
Genre: Computers
ISBN: 9048198097

Download Multiscale Methods in Computational Mechanics Book in PDF, ePub and Kindle

This work gives a modern, up-to-date account of recent developments in computational multiscale mechanics. Both upscaling and concurrent computing methodologies will be addressed for a range of application areas in computational solid and fluid mechanics: Scale transitions in materials, turbulence in fluid-structure interaction problems, multiscale/multilevel optimization, multiscale poromechanics. A Dutch-German research group that consists of qualified and well-known researchers in the field has worked for six years on the topic of computational multiscale mechanics. This text provides a unique opportunity to consolidate and disseminate the knowledge gained in this project. The addition of chapters written by experts outside this working group provides a broad and multifaceted view of this rapidly evolving field.


CFD Modeling of Complex Chemical Processes

CFD Modeling of Complex Chemical Processes
Author: Li Xi
Publisher: MDPI
Total Pages: 296
Release: 2021-09-01
Genre: Technology & Engineering
ISBN: 3036512667

Download CFD Modeling of Complex Chemical Processes Book in PDF, ePub and Kindle

Computational fluid dynamics (CFD), which uses numerical analysis to predict and model complex flow behaviors and transport processes, has become a mainstream tool in engineering process research and development. Complex chemical processes often involve coupling between dynamics at vastly different length and time scales, as well as coupling of different physical models. The multiscale and multiphysics nature of those problems calls for delicate modeling approaches. This book showcases recent contributions in this field, from the development of modeling methodology to its application in supporting the design, development, and optimization of engineering processes.


Computational Multiscale Modeling of Fluids and Solids

Computational Multiscale Modeling of Fluids and Solids
Author: Martin Oliver Steinhauser
Publisher: Springer Science & Business Media
Total Pages: 863
Release: 2008
Genre: Science
ISBN: 3540751165

Download Computational Multiscale Modeling of Fluids and Solids Book in PDF, ePub and Kindle

The idea of the book is to provide a comprehensive overview of computational physics methods and techniques, that are used for materials modeling on different length and time scales. Each chapter first provides an overview of the physical basic principles which are the basis for the numerical and mathematical modeling on the respective length-scale. The book includes the micro-scale, the meso-scale and the macro-scale. The chapters follow this classification. The book will explain in detail many tricks of the trade of some of the most important methods and techniques that are used to simulate materials on the perspective levels of spatial and temporal resolution. Case studies are occasionally included to further illustrate some methods or theoretical considerations. Example applications for all techniques are provided, some of which are from the author’s own contributions to some of the research areas. Methods are explained, if possible, on the basis of the original publications but also references to standard text books established in the various fields are mentioned.


Computational Fluid Dynamics

Computational Fluid Dynamics
Author: Adela Ionescu
Publisher: BoD – Books on Demand
Total Pages: 412
Release: 2018-02-14
Genre: Computers
ISBN: 9535137905

Download Computational Fluid Dynamics Book in PDF, ePub and Kindle

This book is the result of a careful selection of contributors in the field of CFD. It is divided into three sections according to the purpose and approaches used in the development of the contributions. The first section describes the "high-performance computing" (HPC) tools and their impact on CFD modeling. The second section is dedicated to "CFD models for local and large-scale industrial phenomena." Two types of approaches are basically contained here: one concerns the adaptation from global to local scale, - e.g., the applications of CFD to study the climate changes and the adaptations to local scale. The second approach, very challenging, is the multiscale analysis. The third section is devoted to "CFD in numerical modeling approach for experimental cases." Its chapters emphasize on the numerical approach of the mathematical models associated to few experimental (industrial) cases. Here, the impact and the importance of the mathematical modeling in CFD are focused on. It is expected that the collection of these chapters will enrich the state of the art in the CFD domain and its applications in a lot of fields. This collection proves that CFD is a highly interdisciplinary research area, which lies at the interface of physics, engineering, applied mathematics, and computer science.


Multi-scale Phenomena in Complex Fluids

Multi-scale Phenomena in Complex Fluids
Author: Thomas Y. Hou
Publisher: World Scientific
Total Pages: 379
Release: 2009
Genre: Science
ISBN: 9814273252

Download Multi-scale Phenomena in Complex Fluids Book in PDF, ePub and Kindle

Multi-Scale Phenomena in Complex Fluids is a collection of lecture notes delivered during the ªrst two series of mini-courses from "Shanghai Summer School on Analysis and Numerics in Modern Sciences," which was held in 2004 and 2006 at Fudan University, Shanghai, China. This review volume of 5 chapters, covering various fields in complex fluids, places emphasis on multi-scale modeling, analyses and simulations. It will be of special interest to researchers and graduate students who want to work in the field of complex fluids.


Computational Fluid-Structure Interaction

Computational Fluid-Structure Interaction
Author: Yuri Bazilevs
Publisher: John Wiley & Sons
Total Pages: 444
Release: 2013-01-25
Genre: Technology & Engineering
ISBN: 111848357X

Download Computational Fluid-Structure Interaction Book in PDF, ePub and Kindle

Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.


Microflows and Nanoflows

Microflows and Nanoflows
Author: George Karniadakis
Publisher: Springer Science & Business Media
Total Pages: 824
Release: 2006-02-09
Genre: Mathematics
ISBN: 0387286764

Download Microflows and Nanoflows Book in PDF, ePub and Kindle

Subject area has witnessed explosive growth during the last decade and the technology is progressing at an astronomical rate. Previous edition was first to focus exclusively on flow physics within microdevices. It sold over 900 copies in North America since 11/01. New edition is 40 percent longer, with four new chapters on recent topics including Nanofluidics.


Computational Fluid Dynamics (CFD) of Chemical Processes

Computational Fluid Dynamics (CFD) of Chemical Processes
Author: Young-Il Lim
Publisher: MDPI
Total Pages: 114
Release: 2021-02-22
Genre: Technology & Engineering
ISBN: 3039439332

Download Computational Fluid Dynamics (CFD) of Chemical Processes Book in PDF, ePub and Kindle

In this Special Issue, one review paper highlights the necessity of multiscale CFD, coupling micro- and macro-scales, for exchanging information at the interface of the two scales. Four research papers investigate the hydrodynamics, heat transfer, and chemical reactions of various processes using Eulerian CFD modeling. CFD models are attractive for industrial applications. However, substantial efforts in physical modeling and numerical implementation are still required before their widespread implementation.


Multiscale Modeling in Solid Mechanics

Multiscale Modeling in Solid Mechanics
Author: Ugo Galvanetto
Publisher: Imperial College Press
Total Pages: 349
Release: 2010
Genre: Science
ISBN: 1848163088

Download Multiscale Modeling in Solid Mechanics Book in PDF, ePub and Kindle

This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.