Multi Photon Interference Phenomena PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multi Photon Interference Phenomena PDF full book. Access full book title Multi Photon Interference Phenomena.

Multi-Photon Quantum Interference

Multi-Photon Quantum Interference
Author: Zhe-Yu Jeff Ou
Publisher: Springer Science & Business Media
Total Pages: 271
Release: 2007-06-08
Genre: Technology & Engineering
ISBN: 0387255540

Download Multi-Photon Quantum Interference Book in PDF, ePub and Kindle

This book details parametric down-conversion for the generation of non-classical state of light and its applications in generating various kinds of quantum entanglement among multiple photons from parametric down-conversion. It presents applications of the principle of quantum interference to multi-photon systems. The book also details continuous variable entanglement and various types of multi-photon interference effects.


Far from Equilibrium Phase Transitions

Far from Equilibrium Phase Transitions
Author: Luis Garrido
Publisher: Springer
Total Pages: 360
Release: 1988-12-21
Genre: Science
ISBN: 9783540506430

Download Far from Equilibrium Phase Transitions Book in PDF, ePub and Kindle

This collection of lectures covers a wide range of present day research in thermodynamics and the theory of phase transitions far from equilibrium. The contributions are written in a pedagogical style and present an extensive bibliography to help graduates organize their further studies in this area. The reader will find lectures on principles of pattern formation in physics, chemistry and biology, phase instabilities and phase transitions, spatial and temporal structures in optical systems, transition to chaos, critical phenomena and fluctuations in reaction-diffusion systems, and much more.


High-order Interference of Photons in Thermal State

High-order Interference of Photons in Thermal State
Author: Tao Peng
Publisher:
Total Pages: 284
Release: 2015
Genre:
ISBN:

Download High-order Interference of Photons in Thermal State Book in PDF, ePub and Kindle

Superposition principle is one of the most challenging principles of quantum theory, especially in the multi-particle situation. In the language of quantum mechanics, the high-order quantum interference of multi-particle is the consequence of a superposition among different yet indistinguishable probability amplitudes, a non-classical entity corresponding to different yet indistinguishable alternative ways of producing a joint-detection event among distant detectors. In optics, the theory of multiphoton interference of quantum light such as entangled photons are well established and accepted. On the other hand, classical interpretation is frequently used to explain the multiphoton interference of classical light such as thermal light and pseudo-thermal light due to the historical reasons. In this dissertation, we will focus on the study of high-order interference of photons in thermal and pseudo-thermal states. Sunlight, as a typical thermal light, contains a large number of independent and randomly radiated point subsources resulted from the spontaneous atomic transitions. The atomic transitions emit subfields at random positions and times with random phases. The pseudo-thermal light, consisting of a laser beam and a rotating diffusing ground glass, which is frequently used in the lab, can also be modeled as containing a large number of independent and randomly radiated subsouces. A large number of subelds with random phases are then generated from those subsources at random positions and times. As we will show in the dissertation, despite the classical feature of the source, the high-order interference of photons in thermal and pseudo-thermal states can only be fully understood by quantum theory due to the nonlocal nature. We gave a new analysis of the statistical property of pseudo-thermal light based on the coherent state representation following the Glauber-Scully theory. We showed that the new model can describe the energy distribution of the pseudo-thermal light very well. We then showed a novel detection scheme called Photon-Number Fluctuation Correlation(PNFC) protocol, which measures the photon number fluctuation of each of the photodetectors and calculates the statistical correlation between them. This scheme was then applied to measure a 100% HBT correlation and the result can be explained as a nonlocal two-photon interference phenomenon. In additional, the PNFC protocol can be applied to thermal light ghost imaging resulting a 100% visibility ghost imaging measurement as well as high resolution. A set of experiments on the foundations of quantum theory including the delayed-choice quantum eraser experiment and Popper's experiment are then discussed. Nonlocal interference of randomly paired photons measured with the PNFC protocol is applied to explain the experimental results. The single photon picture can lead to paradoxes that can only be understood with the nonlocal interference of random thermal photon pairs with themselves. The nonlocal feature in the interference of photons in thermal state then inspired us to simulate Bell sate with photons in thermal state and extended the test of Bell s inequality to the fluctuation correlation measurement. Experimental observation of Bell correlation from the polarization measurement of thermal fields in photon-number fluctuations is reported, the experimental test of Bell's inequality in photon-number fluctuations is also reported. We then extended this scheme to the simulation of 3-photon GHZ state. The successful simulation of n-photon entangled states can lead to new perspective for quantum computing with thermal light. To demonstrate the potential of thermal light quantum computing, a simulation of the controlled-NOT gate operation is shown in the last part of the thesis. Throughout the dissertation, we showed that the phenomena of photons in thermal and pseudo-thermal state can be more easily and deeply understood by quantum mechanics.


Quantum Optics For Experimentalists

Quantum Optics For Experimentalists
Author: Zheyu Jeff Ou
Publisher: World Scientific Publishing Company
Total Pages: 431
Release: 2017-05-30
Genre: Science
ISBN: 9813220228

Download Quantum Optics For Experimentalists Book in PDF, ePub and Kindle

This book on quantum optics is from the point of view of an experimentalist. It approaches the theory of quantum optics with the language of optical modes of classical wave theory, with which experimentalists are most familiar. This approach makes the transition easy from classical optics to quantum optics. The emphasis on the multimode description of an optical system is more realistic than in most quantum optics textbooks. After the theoretical part, the book goes directly to the two most basic experimental techniques in quantum optics and establishes the connection between the experiments and the theory. The applications include some key quantum optics experiments, and a few more current interests that deal with quantum correlation and entanglement, quantum noise in phase measurement and amplification, and quantum state measurement.


Quantum Interference and Coherence

Quantum Interference and Coherence
Author: Zbigniew Ficek
Publisher: Springer
Total Pages: 427
Release: 2005-09-12
Genre: Science
ISBN: 0387258353

Download Quantum Interference and Coherence Book in PDF, ePub and Kindle

The ?eld that encompasses the term “quantum interference” combines a number of separate concepts, and has a variety of manifestations in d- ferent areas of physics. In the sense considered here, quantum interference is concerned with coherence and correlation phenomena in radiation ?elds and between their sources. It is intimately connected with the phenomenon of non-separability (or entanglement) in quantum mechanics. On account of this, it is obvious that quantum interference may be regarded as a com- nent of quantum information theory, which investigates the ability of the electromagnetic ?eld to transfer information between correlated (entangled) systems. Since it is important to transfer information with the minimum of corruption, the theory of quantum interference is naturally related to the theory of quantum ?uctuations and decoherence. Since the early days of quantum mechanics, interference has been - scribed as the real quantum mystery. Feynman, in his famous introduction to the lectures on the single particle superposition principle, referred in the following way to the phenomenon of interference: “it has in it the heart of quantum mechanics”, and it is really ‘the only mystery’ of quantum mech- ics. With the development of experimental techniques, it has been possible to carry out many of the early Gedanken experiments that played an important role in developing our understanding of the fundamentals of quantum int- ference and entanglement. Despite its long history, quantum interference still challenges our understanding, and continues to excite our imagination.


Quantum Uncertainties

Quantum Uncertainties
Author: William M. Honig
Publisher: Springer Science & Business Media
Total Pages: 474
Release: 2012-12-06
Genre: Science
ISBN: 1468453866

Download Quantum Uncertainties Book in PDF, ePub and Kindle