Multi Omics Approaches For Decoding Heterogeneity In Cancer Immunotherapy PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multi Omics Approaches For Decoding Heterogeneity In Cancer Immunotherapy PDF full book. Access full book title Multi Omics Approaches For Decoding Heterogeneity In Cancer Immunotherapy.

Genome Chaos

Genome Chaos
Author: Henry H. Heng
Publisher: Academic Press
Total Pages: 556
Release: 2019-05-25
Genre: Medical
ISBN: 0128136367

Download Genome Chaos Book in PDF, ePub and Kindle

Genome Chaos: Rethinking Genetics, Evolution, and Molecular Medicine transports readers from Mendelian Genetics to 4D-genomics, building a case for genes and genomes as distinct biological entities, and positing that the genome, rather than individual genes, defines system inheritance and represents a clear unit of selection for macro-evolution. In authoring this thought-provoking text, Dr. Heng invigorates fresh discussions in genome theory and helps readers reevaluate their current understanding of human genetics, evolution, and new pathways for advancing molecular and precision medicine. Bridges basic research and clinical application and provides a foundation for re-examining the results of large-scale omics studies and advancing molecular medicine Gathers the most pressing questions in genomic and cytogenomic research Offers alternative explanations to timely puzzles in the field Contains eight evidence-based chapters that discuss 4d-genomics, genes and genomes as distinct biological entities, genome chaos and macro-cellular evolution, evolutionary cytogenetics and cancer, chromosomal coding and fuzzy inheritance, and more


Transcriptome and Single-Cell Sequencing Analyses to Classify Immune Subtypes, Uncover Novel Biomarkers, and Assess Immunotherapeutic Responses in Cancer

Transcriptome and Single-Cell Sequencing Analyses to Classify Immune Subtypes, Uncover Novel Biomarkers, and Assess Immunotherapeutic Responses in Cancer
Author: Hongda Liu
Publisher: Frontiers Media SA
Total Pages: 242
Release: 2024-07-24
Genre: Medical
ISBN: 2832552064

Download Transcriptome and Single-Cell Sequencing Analyses to Classify Immune Subtypes, Uncover Novel Biomarkers, and Assess Immunotherapeutic Responses in Cancer Book in PDF, ePub and Kindle

According to the most recent projections of the International Agency for Research on Cancer (IARC), there would be around 19.3 million new cases of cancer and 10 million cancer-related deaths globally in 2022. Cancer research has never halted. In particular, research into the cancer immunological microenvironment is gaining popularity.


Omics Approaches and Technologies in COVID-19

Omics Approaches and Technologies in COVID-19
Author: Debmalya Barh
Publisher: Academic Press
Total Pages: 464
Release: 2022-12-01
Genre: Medical
ISBN: 0323986218

Download Omics Approaches and Technologies in COVID-19 Book in PDF, ePub and Kindle

The COVID-19 pandemic has affected the entire world in an unprecedented way since 2019. However, novel and innovative applications of various omics, computational, and smart technologies have helped manage the pandemic of the 21st century in a very effective manner. Omics approaches and technologies in COVID-19 presents up-to-date knowledge on omics, genetic engineering, mathematical and computational approaches, and advanced technologies in the diagnosis, prevention, monitoring, and management of COVID-19. This book contains 26 chapters written by academic and industry experts from more than 15 countries. Split into three sections (Omics; Artificial Intelligence and Bioinformatics; and Smart and Emerging Technologies), it brings an overview of novel technologies under omics such as, genomic, metagenomic, pangenomic, metabolomics and proteomics in COVID-19. In addition, it discusses hostpathogen interactions and interactomics, management options, application of genetic engineering, mathematical modeling andsimulations, systems biology, and bioinformatics approaches in COVID-19 drug discovery and vaccine development. This is a valuable resource for students, biotechnologists, bioinformaticians, virologists, clinicians, and pharmaceutical, biomedical, and healthcare industry people who want to understand the promising omics and other technologies used in combating COVID-19 from various aspects. Provides novel technologies for rapid diagnostics, drug discovery, vaccine development, monitoring, prediction of future waves, etc. Describes various omics applications including genomics, metagenomics, epigenomics, nutrigenomics, transcriptomics,miRNAomics, proteomics, metabolomics, phenomics, multiomics, etc., in COVID-19 Presents applications of genetic engineering, CRISPR, artificial intelligence, mathematical and in silico modeling, systems biology,and other computational approaches in COVID-19 Discusses emerging, digital, and smart technologies for the monitoring and management of COVID-19


Introduction to Single Cell Omics

Introduction to Single Cell Omics
Author: Xinghua Pan
Publisher: Frontiers Media SA
Total Pages: 129
Release: 2019-09-19
Genre:
ISBN: 2889459209

Download Introduction to Single Cell Omics Book in PDF, ePub and Kindle

Single-cell omics is a progressing frontier that stems from the sequencing of the human genome and the development of omics technologies, particularly genomics, transcriptomics, epigenomics and proteomics, but the sensitivity is now improved to single-cell level. The new generation of methodologies, especially the next generation sequencing (NGS) technology, plays a leading role in genomics related fields; however, the conventional techniques of omics require number of cells to be large, usually on the order of millions of cells, which is hardly accessible in some cases. More importantly, harnessing the power of omics technologies and applying those at the single-cell level are crucial since every cell is specific and unique, and almost every cell population in every systems, derived in either vivo or in vitro, is heterogeneous. Deciphering the heterogeneity of the cell population hence becomes critical for recognizing the mechanism and significance of the system. However, without an extensive examination of individual cells, a massive analysis of cell population would only give an average output of the cells, but neglect the differences among cells. Single-cell omics seeks to study a number of individual cells in parallel for their different dimensions of molecular profile on genome-wide scale, providing unprecedented resolution for the interpretation of both the structure and function of an organ, tissue or other system, as well as the interaction (and communication) and dynamics of single cells or subpopulations of cells and their lineages. Importantly single-cell omics enables the identification of a minor subpopulation of cells that may play a critical role in biological process over a dominant subpolulation such as a cancer and a developing organ. It provides an ultra-sensitive tool for us to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. Besides, it also empowers the clinical investigation of patients when facing a very low quantity of cell available for analysis, such as noninvasive cancer screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics greatly promotes the understanding of life at a more fundamental level, bring vast applications in medicine. Accordingly, single-cell omics is also called as single-cell analysis or single-cell biology. Within only a couple of years, single-cell omics, especially transcriptomic sequencing (scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become robust and broadly accessible. Besides the existing technologies, recently, multiplexing barcode design and combinatorial indexing technology, in combination with microfluidic platform exampled by Drop-seq, or even being independent of microfluidic platform but using a regular PCR-plate, enable us a greater capacity of single cell analysis, switching from one single cell to thousands of single cells in a single test. The unique molecular identifiers (UMIs) allow the amplification bias among the original molecules to be corrected faithfully, resulting in a reliable quantitative measurement of omics in single cells. Of late, a variety of single-cell epigenomics analyses are becoming sophisticated, particularly single cell chromatin accessibility (scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome sequencing, make the native relationship of the individual cells of a tissue to be in 3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 editing-based In vivo lineage tracing methods enable dynamic profile of a whole developmental process to be accurately displayed. Multi-omics analysis facilitates the study of multi-dimensional regulation and relationship of different elements of the central dogma in a single cell, as well as permitting a clear dissection of the complicated omics heterogeneity of a system. Last but not the least, the technology, biological noise, sequence dropout, and batch effect bring a huge challenge to the bioinformatics of single cell omics. While significant progress in the data analysis has been made since then, revolutionary theory and algorithm logics for single cell omics are expected. Indeed, single-cell analysis exert considerable impacts on the fields of biological studies, particularly cancers, neuron and neural system, stem cells, embryo development and immune system; other than that, it also tremendously motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision medicine. This book hereby summarizes the recent developments and general considerations of single-cell analysis, with a detailed presentation on selected technologies and applications. Starting with the experimental design on single-cell omics, the book then emphasizes the consideration on heterogeneity of cancer and other systems. It also gives an introduction of the basic methods and key facts for bioinformatics analysis. Secondary, this book provides a summary of two types of popular technologies, the fundamental tools on single-cell isolation, and the developments of single cell multi-omics, followed by descriptions of FISH technologies, though other popular technologies are not covered here due to the fact that they are intensively described here and there recently. Finally, the book illustrates an elastomer-based integrated fluidic circuit that allows a connection between single cell functional studies combining stimulation, response, imaging and measurement, and corresponding single cell sequencing. This is a model system for single cell functional genomics. In addition, it reports a pipeline for single-cell proteomics with an analysis of the early development of Xenopus embryo, a single-cell qRT-PCR application that defined the subpopulations related to cell cycling, and a new method for synergistic assembly of single cell genome with sequencing of amplification product by phi29 DNA polymerase. Due to the tremendous progresses of single-cell omics in recent years, the topics covered here are incomplete, but each individual topic is excellently addressed, significantly interesting and beneficial to scientists working in or affiliated with this field.


Personalized Medicine in Oncology

Personalized Medicine in Oncology
Author: Ari VanderWalde
Publisher:
Total Pages: 174
Release: 2022
Genre:
ISBN: 9783036528205

Download Personalized Medicine in Oncology Book in PDF, ePub and Kindle

Nowhere is the explosion in comprehensive genomic testing more evident than in oncology. Multiple consensus guidelines now recommend molecular testing as the standard of care for most metastatic tumors. To aid in the advancement of this rapidly changing field, we intend this Special Issue of JPM to focus on technical developments in the genomic profiling of cancer, detail promising somatic alterations that either are, or have a high likelihood of being, relevant in the near future, and to address issues related to the pricing and value of these tests.The last few years have seen the cost of molecular testing decrease by orders of magnitude. In 2018, we saw the first “site-agnostic” drug approvals in cancer (for microsatellite unstable cancer (PD-1 inhibitors) and NTRK-fusions (TRK inhibitors)). Research on targetable mutations, determination of genetic “signatures” that can use multiple individual genes/pathways, development of targeted therapy, and insight into the value of new technology remains at the cutting edge of research in this field. We are soliciting papers that present new technologies to assess predictive biomarkers in cancer, original research (pre-clinical or clinical) that demonstrates promise for particular targeted therapies in cancer, and articles that explore the clinical and financial impacts of this paradigmatic shift in cancer diagnostics and treatment.