Motion Planning For Mobile Robots Via Sampling Based Model Predictive Optimization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Motion Planning For Mobile Robots Via Sampling Based Model Predictive Optimization PDF full book. Access full book title Motion Planning For Mobile Robots Via Sampling Based Model Predictive Optimization.

Recent Advances in Mobile Robotics

Recent Advances in Mobile Robotics
Author: Andon Topalov
Publisher: IntechOpen
Total Pages: 466
Release: 2011-12-14
Genre: Technology & Engineering
ISBN: 9789533079097

Download Recent Advances in Mobile Robotics Book in PDF, ePub and Kindle

Mobile robots are the focus of a great deal of current research in robotics. Mobile robotics is a young, multidisciplinary field involving knowledge from many areas, including electrical, electronic and mechanical engineering, computer, cognitive and social sciences. Being engaged in the design of automated systems, it lies at the intersection of artificial intelligence, computational vision, and robotics. Thanks to the numerous researchers sharing their goals, visions and results within the community, mobile robotics is becoming a very rich and stimulating area. The book Recent Advances in Mobile Robotics addresses the topic by integrating contributions from many researchers around the globe. It emphasizes the computational methods of programming mobile robots, rather than the methods of constructing the hardware. Its content reflects different complementary aspects of theory and practice, which have recently taken place. We believe that it will serve as a valuable handbook to those who work in research and development of mobile robots.


Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning

Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning
Author: Adnan Tahirovic
Publisher: Springer Science & Business Media
Total Pages: 64
Release: 2013-04-18
Genre: Technology & Engineering
ISBN: 144715049X

Download Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning Book in PDF, ePub and Kindle

Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the worst-case scenario that might occur during the task execution. Some of the questions answered in the text include: • how to use an MPC optimization framework for the mobile vehicle navigation approach; • how to guarantee safe task completion even in complex environments including obstacle avoidance and sideslip and rollover avoidance; and • what to expect in the worst-case scenario in which the roughness of the terrain leads the algorithm to generate the longest possible path to the goal. The passivity-based MPC approach provides a framework in which a wide range of complex vehicles can be accommodated to obtain a safer and more realizable tool during the path-planning stage. During task execution, the optimization step is continuously repeated to take into account new local sensor measurements. These ongoing changes make the path generated rather robust in comparison with techniques that fix the entire path prior to task execution. In addition to researchers working in MPC, engineers interested in vehicle path planning for a number of purposes: rescued mission in hazardous environments; humanitarian demining; agriculture; and even planetary exploration, will find this SpringerBrief to be instructive and helpful.


Recent Advances in Mobile Robotics

Recent Advances in Mobile Robotics
Author: Andon Topalov
Publisher: BoD – Books on Demand
Total Pages: 468
Release: 2011-12-14
Genre: Technology & Engineering
ISBN: 9533079096

Download Recent Advances in Mobile Robotics Book in PDF, ePub and Kindle

Mobile robots are the focus of a great deal of current research in robotics. Mobile robotics is a young, multidisciplinary field involving knowledge from many areas, including electrical, electronic and mechanical engineering, computer, cognitive and social sciences. Being engaged in the design of automated systems, it lies at the intersection of artificial intelligence, computational vision, and robotics. Thanks to the numerous researchers sharing their goals, visions and results within the community, mobile robotics is becoming a very rich and stimulating area. The book Recent Advances in Mobile Robotics addresses the topic by integrating contributions from many researchers around the globe. It emphasizes the computational methods of programming mobile robots, rather than the methods of constructing the hardware. Its content reflects different complementary aspects of theory and practice, which have recently taken place. We believe that it will serve as a valuable handbook to those who work in research and development of mobile robots.


On Motion Planning Using Numerical Optimal Control

On Motion Planning Using Numerical Optimal Control
Author: Kristoffer Bergman
Publisher: Linköping University Electronic Press
Total Pages: 91
Release: 2019-05-28
Genre:
ISBN: 9176850579

Download On Motion Planning Using Numerical Optimal Control Book in PDF, ePub and Kindle

During the last decades, motion planning for autonomous systems has become an important area of research. The high interest is not the least due to the development of systems such as self-driving cars, unmanned aerial vehicles and robotic manipulators. In this thesis, the objective is not only to find feasible solutions to a motion planning problem, but solutions that also optimize some kind of performance measure. From a control perspective, the resulting problem is an instance of an optimal control problem. In this thesis, the focus is to further develop optimal control algorithms such that they be can used to obtain improved solutions to motion planning problems. This is achieved by combining ideas from automatic control, numerical optimization and robotics. First, a systematic approach for computing local solutions to motion planning problems in challenging environments is presented. The solutions are computed by combining homotopy methods and numerical optimal control techniques. The general principle is to define a homotopy that transforms, or preferably relaxes, the original problem to an easily solved problem. The approach is demonstrated in motion planning problems in 2D and 3D environments, where the presented method outperforms both a state-of-the-art numerical optimal control method based on standard initialization strategies and a state-of-the-art optimizing sampling-based planner based on random sampling. Second, a framework for automatically generating motion primitives for lattice-based motion planners is proposed. Given a family of systems, the user only needs to specify which principle types of motions that are relevant for the considered system family. Based on the selected principle motions and a selected system instance, the algorithm not only automatically optimizes the motions connecting pre-defined boundary conditions, but also simultaneously optimizes the terminal state constraints as well. In addition to handling static a priori known system parameters such as platform dimensions, the framework also allows for fast automatic re-optimization of motion primitives if the system parameters change while the system is in use. Furthermore, the proposed framework is extended to also allow for an optimization of discretization parameters, that are are used by the lattice-based motion planner to define a state-space discretization. This enables an optimized selection of these parameters for a specific system instance. Finally, a unified optimization-based path planning approach to efficiently compute locally optimal solutions to advanced path planning problems is presented. The main idea is to combine the strengths of sampling-based path planners and numerical optimal control. The lattice-based path planner is applied to the problem in a first step using a discretized search space, where system dynamics and objective function are chosen to coincide with those used in a second numerical optimal control step. This novel tight combination of a sampling-based path planner and numerical optimal control makes, in a structured way, benefit of the former method’s ability to solve combinatorial parts of the problem and the latter method’s ability to obtain locally optimal solutions not constrained to a discretized search space. The proposed approach is shown in several practically relevant path planning problems to provide improvements in terms of computation time, numerical reliability, and objective function value.


Application of Sampling-based Model Predictive Control to Motion Planning for Robotic Manipulators

Application of Sampling-based Model Predictive Control to Motion Planning for Robotic Manipulators
Author: Tomás Fernando Mann Sánchez
Publisher:
Total Pages: 111
Release: 2011
Genre:
ISBN:

Download Application of Sampling-based Model Predictive Control to Motion Planning for Robotic Manipulators Book in PDF, ePub and Kindle

ABSTRACT: More specifically, SBMPC was used with simulations of two manipulators, namely a 3-link planar manipulator and the Barrett WAM. The results show that SBMPC can be used to generate smooth paths for these two manipulators simply by sampling joint velocities instead of joint angles, and even smoother paths by sampling joint accelerations instead of joint velocities. The results also demonstrate that SBMPC can generate smooth trajectories given that the proper cost function and goal heuristic are used. Since SBMPC is able to generate smooth smooth paths or smooth trajectories in a single step, this presents a significant improvement to the conventional approach used for robot motion planning used in the past few decades. Finally, SBMPC is still under investigation, and even though important results are presented here, SBMPC still has room for improvement that could lead to more interesting projects.


Adaptive Mobile Robotics

Adaptive Mobile Robotics
Author: Abul K. M. Azad
Publisher: World Scientific
Total Pages: 904
Release: 2012
Genre: Technology & Engineering
ISBN: 9814415944

Download Adaptive Mobile Robotics Book in PDF, ePub and Kindle

This book provides state-of-the-art scientific and engineering research findings and developments in the area of mobile robotics and associated support technologies. The book contains peer reviewed articles presented at the CLAWAR 2012 conference. Robots are no longer confined to industrial and manufacturing environments. A great deal of interest is invested in the use of robots outside the factory environment. The CLAWAR conference series, established as a high profile international event, acts as a platform for dissemination of research and development findings and supports such a trend to address the current interest in mobile robotics to meet the needs of mankind in various sectors of the society. These include personal care, public health, services in the domestic, public and industrial environments. The editors of the book have extensive research experience and publications in the area of robotics in general and in mobile robotics specifically, and their experience is reflected in editing the contents of the book.


Path Planning of Cooperative Mobile Robots Using Discrete Event Models

Path Planning of Cooperative Mobile Robots Using Discrete Event Models
Author: Cristian Mahulea
Publisher: John Wiley & Sons
Total Pages: 240
Release: 2020-01-09
Genre: Technology & Engineering
ISBN: 1119486327

Download Path Planning of Cooperative Mobile Robots Using Discrete Event Models Book in PDF, ePub and Kindle

Offers an integrated presentation for path planning and motion control of cooperative mobile robots using discrete-event system principles Generating feasible paths or routes between a given starting position and a goal or target position—while avoiding obstacles—is a common issue for all mobile robots. This book formulates the problem of path planning of cooperative mobile robots by using the paradigm of discrete-event systems. It presents everything readers need to know about discrete event system models—mainly Finite State Automata (FSA) and Petri Nets (PN)—and methods for centralized path planning and control of teams of identical mobile robots. Path Planning of Cooperative Mobile Robots Using Discrete Event Models begins with a brief definition of the Path Planning and Motion Control problems and their state of the art. It then presents different types of discrete models such as FSA and PNs. The RMTool MATLAB toolbox is described thereafter, for readers who will need it to provide numerical experiments in the last section. The book also discusses cell decomposition approaches and shows how the divided environment can be translated into an FSA by assigning to each cell a discrete state, while the adjacent relation together with the robot's dynamics implies the discrete transitions. Highlighting the benefits of Boolean Logic, Linear Temporal Logic, cell decomposition, Finite State Automata modeling, and Petri Nets, this book also: Synthesizes automatic strategies based on Discrete Event Systems (DES) for path planning and motion control and offers software implementations for the involved algorithms Provides a tutorial for motion planning introductory courses or related simulation-based projects using a MATLAB package called RMTool (Robot Motion Toolbox) Includes simulations for problems solved by methodologies presented in the book Path Planning of Cooperative Mobile Robots Using Discrete Event Models is an ideal book for undergraduate and graduate students and college and university professors in the areas of robotics, artificial intelligence, systems modeling, and autonomous control.