Mos Interface Physics Process And Characterization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mos Interface Physics Process And Characterization PDF full book. Access full book title Mos Interface Physics Process And Characterization.

MOS Interface Physics, Process and Characterization

MOS Interface Physics, Process and Characterization
Author: Shengkai Wang
Publisher: CRC Press
Total Pages: 192
Release: 2021-10-05
Genre: Technology & Engineering
ISBN: 1000455769

Download MOS Interface Physics, Process and Characterization Book in PDF, ePub and Kindle

The electronic device based on Metal Oxide Semiconductor (MOS) structure is the most important component of a large-scale integrated circuit, and is therefore a fundamental building block of the information society. Indeed, high quality MOS structure is the key to achieving high performance devices and integrated circuits. Meanwhile, the control of interface physics, process and characterization methods determine the quality of MOS structure. This book tries to answer five key questions: Why are high-performance integrated circuits bonded together so closely with MOS structure? Which physical phenomena occur in MOS structure? How do these phenomena affect the performance of MOS structure? How can we observe and quantify these phenomena scientifically? How to control the above phenomena through process? Principles are explained based on common experimental phenomena, from sensibility to rationality, via abundant experimental examples focusing on MOS structure, including specific experimental steps with a strong level of operability. This book will be an essential reference for engineers in semiconductor related fields and academics and postgraduates within the field of microelectronics.


MOS Interface Physics, Process and Characterization

MOS Interface Physics, Process and Characterization
Author: Shengkai Wang
Publisher: CRC Press
Total Pages: 200
Release: 2021-10-05
Genre: Technology & Engineering
ISBN: 1000455742

Download MOS Interface Physics, Process and Characterization Book in PDF, ePub and Kindle

The electronic device based on Metal Oxide Semiconductor (MOS) structure is the most important component of a large-scale integrated circuit, and is therefore a fundamental building block of the information society. Indeed, high quality MOS structure is the key to achieving high performance devices and integrated circuits. Meanwhile, the control of interface physics, process and characterization methods determine the quality of MOS structure. This book tries to answer five key questions: Why are high-performance integrated circuits bonded together so closely with MOS structure? Which physical phenomena occur in MOS structure? How do these phenomena affect the performance of MOS structure? How can we observe and quantify these phenomena scientifically? How to control the above phenomena through process? Principles are explained based on common experimental phenomena, from sensibility to rationality, via abundant experimental examples focusing on MOS structure, including specific experimental steps with a strong level of operability. This book will be an essential reference for engineers in semiconductor related fields and academics and postgraduates within the field of microelectronics.


MOS (Metal Oxide Semiconductor) Physics and Technology

MOS (Metal Oxide Semiconductor) Physics and Technology
Author: E. H. Nicollian
Publisher: John Wiley & Sons
Total Pages: 928
Release: 2002-11-21
Genre: Technology & Engineering
ISBN: 047143079X

Download MOS (Metal Oxide Semiconductor) Physics and Technology Book in PDF, ePub and Kindle

Explains the theoretical and experimental foundations of the measurement of the electrical properties of the MOS system and the technology for controlling its properties. Emphasizes the silica and the silica-silicon interface. Provides a critical assessment of the literature, corrects incomplete or incorrect theoretical formulations, and gives critical comparisons of measurement methods. Contains information needed to grow an oxide, make an MOS capacitor array, and fabricate an integrated circuit with optimal performance and stability.


Materials and Process Characterization

Materials and Process Characterization
Author: Norman G. Einspruch
Publisher: Academic Press
Total Pages: 614
Release: 2014-12-01
Genre: Technology & Engineering
ISBN: 1483217736

Download Materials and Process Characterization Book in PDF, ePub and Kindle

VLSI Electronics: Microstructure Science, Volume 6: Materials and Process Characterization addresses the problem of how to apply a broad range of sophisticated materials characterization tools to materials and processes used for development and production of very large scale integration (VLSI) electronics. This book discusses the various characterization techniques, such as Auger spectroscopy, secondary ion mass spectroscopy, X-ray topography, transmission electron microscopy, and spreading resistance. The systematic approach to the technologies of VLSI electronic materials and device manufacture are also considered. This volume is beneficial to materials scientists, chemists, and engineers who are commissioned with the responsibility of developing and implementing the production of materials and devices to support the VLSI era.


Physics and Chemistry of III-V Compound Semiconductor Interfaces

Physics and Chemistry of III-V Compound Semiconductor Interfaces
Author: Carl Wilmsen
Publisher: Springer Science & Business Media
Total Pages: 472
Release: 2013-06-29
Genre: Science
ISBN: 1468448358

Download Physics and Chemistry of III-V Compound Semiconductor Interfaces Book in PDF, ePub and Kindle

The application of the 111-V compound semiconductors to device fabrica tion has grown considerably in the last few years. This process has been stimulated, in part, by the advancement in the understanding of the interface physics and chemistry of the III-V's. The literature on this subject is spread over the last 15 years and appears in many journals and conference proceedings. Understanding this literature requires consider able effort by the seasoned researcher, and even more for those starting out in the field or by engineers and scientists who wish to apply this knowledge to the fabrication of devices. The purpose of this book is to bring together much of the fundamental and practical knowledge on the physics and chemistry of the 111-V compounds with metals and dielectrics. The authors of this book have endeavored to provide concise overviews of these areas with many tahles ancI grarhs whic. h c. omr>are and summarize the literature. In this way, the book serves as both an insightful treatise on III-V interfaces and a handy reference to the literature. The selection of authors was mandated by the desire to include both fundamental and practical approaches, covering device and material aspects of the interfaces. All of the authors are recognized experts on III-V interfaces and each has worked for many years in his subject area. This experience is projected in the breadth of understanding in each chapter.


Characterization Methods for Submicron MOSFETs

Characterization Methods for Submicron MOSFETs
Author: Hisham Haddara
Publisher: Springer
Total Pages: 256
Release: 1995
Genre: Technology & Engineering
ISBN:

Download Characterization Methods for Submicron MOSFETs Book in PDF, ePub and Kindle

The Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) is a key component in modern microelectronics. During the last decade, device physicists, researchers and engineers have been continuously faced with new elements making the task of MOSFET characterization increasingly crucial, as well as more difficult. The progressive miniaturization of devices has caused several phenomena to emerge and modify the performance of scaled-down MOSFETs. Localized degradation induced by hot carrier injection and Random Telegraph Signal (RTS) noise generated by individual traps are examples. It was thus unavoidable to develop new models and new characterization methods, or at least adapt the existing ones to cope with the special nature of these new phenomena. Characterization Methods for Submicron MOSFETs deals with techniques which show high potential for characterization of submicron devices. Throughout the book the focus is on the adaptation of such methods to resolve measurement problems relevant to VLSI devices and new materials, especially Silicon-on-Insulator (SOI). Characterization Methods for Submicron MOSFETs was written to provide help to device engineers and researchers to enable them to cope with the challenges they face. Without adequate device characterization, new physical phenomena and new types of defects or damage may not be well identified or dealt with, leading to an undoubted obstruction of the device development cycle. Audience: Researchers and graduate students familiar with MOS device physics, working in the field of device characterization and modeling. Also intended for industrial engineers working in device development, seeking to enlarge their understanding of measurement methods. The book additionally addresses device-based characterization for material and process engineers and for circuit designers. A valuable reference that may be used as a text for advanced courses on the subject.


Physics and Technology of High-k Gate Dielectrics 6

Physics and Technology of High-k Gate Dielectrics 6
Author: S. Kar
Publisher: The Electrochemical Society
Total Pages: 550
Release: 2008-10
Genre: Dielectrics
ISBN: 1566776511

Download Physics and Technology of High-k Gate Dielectrics 6 Book in PDF, ePub and Kindle

The issue covers in detail all aspects of the physics and the technology of high dielectric constant gate stacks, including high mobility substrates, novel and still higher permittivity dielectric materials, CMOS processing with high-K layers, metals for gate electrodes, interface issues, physical, chemical, and electrical characterization, gate stack reliability, and DRAM and non-volatile memories.


Fundamentals of Bias Temperature Instability in MOS Transistors

Fundamentals of Bias Temperature Instability in MOS Transistors
Author: Souvik Mahapatra
Publisher: Springer
Total Pages: 282
Release: 2015-08-05
Genre: Technology & Engineering
ISBN: 8132225082

Download Fundamentals of Bias Temperature Instability in MOS Transistors Book in PDF, ePub and Kindle

This book aims to cover different aspects of Bias Temperature Instability (BTI). BTI remains as an important reliability concern for CMOS transistors and circuits. Development of BTI resilient technology relies on utilizing artefact-free stress and measurement methods and suitable physics-based models for accurate determination of degradation at end-of-life and understanding the gate insulator process impact on BTI. This book discusses different ultra-fast characterization techniques for recovery artefact free BTI measurements. It also covers different direct measurements techniques to access pre-existing and newly generated gate insulator traps responsible for BTI. The book provides a consistent physical framework for NBTI and PBTI respectively for p- and n- channel MOSFETs, consisting of trap generation and trapping. A physics-based compact model is presented to estimate measured BTI degradation in planar Si MOSFETs having differently processed SiON and HKMG gate insulators, in planar SiGe MOSFETs and also in Si FinFETs. The contents also include a detailed investigation of the gate insulator process dependence of BTI in differently processed SiON and HKMG MOSFETs. The book then goes on to discuss Reaction-Diffusion (RD) model to estimate generation of new traps for DC and AC NBTI stress and Transient Trap Occupancy Model (TTOM) to estimate charge occupancy of generated traps and their contribution to BTI degradation. Finally, a comprehensive NBTI modeling framework including TTOM enabled RD model and hole trapping to predict time evolution of BTI degradation and recovery during and after DC stress for different stress and recovery biases and temperature, during consecutive arbitrary stress and recovery cycles and during AC stress at different frequency and duty cycle. The contents of this book should prove useful to academia and professionals alike.