Molecular Dynamics And Diffusion PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Molecular Dynamics And Diffusion PDF full book. Access full book title Molecular Dynamics And Diffusion.

Molecular Dynamics and Diffusion

Molecular Dynamics and Diffusion
Author: David J. Fisher
Publisher: Trans Tech Publications Ltd
Total Pages: 368
Release: 2013-04-19
Genre: Technology & Engineering
ISBN: 303826119X

Download Molecular Dynamics and Diffusion Book in PDF, ePub and Kindle

The molecular dynamics technique was developed in the 1960s as the outgrowth of attempts to model complicated systems by using either a) direct physical simulation or (following the great success of Monte Carlo methods) by b) using computer techniques. Computer simulation soon won out over clumsy physical simulation, and the ever-increasing speed and sophistication of computers has naturally made molecular dynamics simulation into a more and more successful technique. One of its most popular applications is the study of diffusion, and some experts now even claim that molecular dynamics simulation is, in the case of situations involving well-characterised elements and structures, more accurate than experimental measurement. The present double volume includes a compilation (over 600 items) of predicted solid-state diffusion data, for all of the major materials groups, dating back nearly four decades. The double volume also includes some original papers: “Determination of the Activation Energy for Formation and Migration of Thermal Vacancies in 401.0 Casting Aluminum Alloy” (N.A.Kamel et al.), “A Study of the Effect of Natural Aging on Some Plastically Deformed Aluminum Alloys using Two Different Techniques” (N.A.Kamel), “Estimation of Crystalline Size of Deformed 5251 Al Alloy using PALT and XRD Techniques” (M.A.Abdel-Rahman et al.), “Determination of the Activation Energy for Formation and Migration of Thermal Vacancies in 2024 Aircraft Material using Different Techniques and Methods” (N.A.Kamel), “Annealing Study of Al-Mg Wrought Alloys using Two Different Techniques and Estimation of the Activation Enthalpy of Migrating Defects” (G.Attallah et al.), “Studying the Formation of Fe2SiO4 and Pearlite Phases in Iron-Silica Sand Nanoparticle Composites” (T.Ahmad et al.), “Studies of Knight Shifts and Hyperfine Structure Constants of Tl2Ba2CuO6+y” (M.Q.Kuang et al.).


Molecular Dynamics and Diffusion

Molecular Dynamics and Diffusion
Author: D. J. Fisher
Publisher:
Total Pages: 361
Release: 2013
Genre: Diffusion
ISBN:

Download Molecular Dynamics and Diffusion Book in PDF, ePub and Kindle

The molecular dynamics technique was developed in the 1960s as the outgrowth of attempts to model complicated systems by using either a) direct physical simulation or (following the great success of Monte Carlo methods) by b) using computer techniques. Computer simulation soon won out over clumsy physical simulation, and the ever-increasing speed and sophistication of computers has naturally made molecular dynamics simulation into a more and more successful technique. One of its most popular applications is the study of diffusion, and some experts now even claim that molecular dynamics simulation is, in the case of situations involving well-characterised elements and structures, more accurate than experimental measurement. The present double volume includes a compilation (over 600 items) of predicted solid-state diffusion data, for all of the major materials groups, dating back nearly four decades. The double volume also includes some original papers: "Determination of the Activation Energy for Formation and Migration of Thermal Vacancies in 401.0 Casting Aluminum Alloy" (N.A.Kamel et al.), "A Study of the Effect of Natural Aging on Some Plastically Deformed Aluminum Alloys using Two Different Techniques" (N.A.Kamel), "Estimation of Crystalline Size of Deformed 5251 Al Alloy using PALT and XRD Techniques" (M.A.Abdel-Rahman et al.), "Determination of the Activation Energy for Formation and Migration of Thermal Vacancies in 2024 Aircraft Material using Different Techniques and Methods" (N.A.Kamel), "Annealing Study of Al-Mg Wrought Alloys using Two Different Techniques and Estimation of the Activation Enthalpy of Migrating Defects" (G.Attallah et al.), "Studying the Formation of Fe2SiO4 and Pearlite Phases in Iron-Silica Sand Nanoparticle Composites" (T.Ahmad et al.), "Studies of Knight Shifts and Hyperfine Structure Constants of Tl2Ba2CuO6+y" (M.Q.Kuang et al.). Review from Book News Inc.: This is the final issue of the print periodical, which can no longer compete with electronic periodicals, and is having trouble finding classical diffusion studies, which have been declining with the increasing accuracy of computer prediction of diffusion parameters. Here are 672 abstracts of articles on the molecular dynamics technique as applied to diffusion studies. They are arranged in such sections as metals, carbons and carbines, semiconductors, nitrides, and general. Seven research papers are also included, reporting on such matters as the effect of natural aging on some plastically deformed aluminum alloys using two different techniques, determining the activation energy for the formation and migration of thermal vacancies in 2024 aircraft material using different techniques and methods, and an annealing study of aluminum-magnesium wrought alloys using two different techniques and estimating the activation enthalpy of migrating defects.


The Art of Molecular Dynamics Simulation

The Art of Molecular Dynamics Simulation
Author: D. C. Rapaport
Publisher: Cambridge University Press
Total Pages: 568
Release: 2004-04
Genre: Science
ISBN: 9780521825689

Download The Art of Molecular Dynamics Simulation Book in PDF, ePub and Kindle

First time paperback of successful physics monograph. Copyright © Libri GmbH. All rights reserved.


Molecular Dynamics

Molecular Dynamics
Author: Lichang Wang
Publisher: BoD – Books on Demand
Total Pages: 440
Release: 2012-04-05
Genre: Mathematics
ISBN: 9535104438

Download Molecular Dynamics Book in PDF, ePub and Kindle

Molecular Dynamics is a two-volume compendium of the ever-growing applications of molecular dynamics simulations to solve a wider range of scientific and engineering challenges. The contents illustrate the rapid progress on molecular dynamics simulations in many fields of science and technology, such as nanotechnology, energy research, and biology, due to the advances of new dynamics theories and the extraordinary power of today's computers. This first book begins with a general description of underlying theories of molecular dynamics simulations and provides extensive coverage of molecular dynamics simulations in nanotechnology and energy. Coverage of this book includes: Recent advances of molecular dynamics theory Formation and evolution of nanoparticles of up to 106 atoms Diffusion and dissociation of gas and liquid molecules on silicon, metal, or metal organic frameworks Conductivity of ionic species in solid oxides Ion solvation in liquid mixtures Nuclear structures


Diffusion in Crystalline Solids

Diffusion in Crystalline Solids
Author: G E Murch
Publisher: Academic Press
Total Pages: 503
Release: 2012-12-02
Genre: Science
ISBN: 0323140300

Download Diffusion in Crystalline Solids Book in PDF, ePub and Kindle

Diffusion in Crystalline Solids addresses some of the most active areas of research on diffusion in crystalline solids. Topics covered include measurement of tracer diffusion coefficients in solids, diffusion in silicon and germanium, atom transport in oxides of the fluorite structure, tracer diffusion in concentrated alloys, diffusion in dislocations, grain boundary diffusion mechanisms in metals, and the use of the Monte Carlo Method to simulate diffusion kinetics. This book is made up of eight chapters and begins with an introduction to the measurement of diffusion coefficients with radioisotopes. The following three chapters consider diffusion in materials of substantial technological importance such as silicon and germanium. Atomic transport in oxides of the fluorite structure is described, and diffusion in concentrated alloys, including intermetallic compounds, is analyzed. The next two chapters delve into diffusion along short-circuiting paths, focusing on the effect of diffusion down dislocations on the form of the tracer concentration profile. The book also discusses the mechanisms of diffusion in grain boundaries in metals by invoking considerable work done on grain-boundary structure. The last two chapters are concerned with computer simulation, paying particular attention to machine calculations and the Monte Carlo method. The book concludes by exploring the fundamental atomic migration process and presenting some state-of-the-art calculations for defect energies and the topology of the saddle surface. Students and researchers of material science will find this book extremely useful.


Adsorption and Diffusion

Adsorption and Diffusion
Author: Hellmut G. Karge
Publisher: Springer Science & Business Media
Total Pages: 411
Release: 2008-06-17
Genre: Science
ISBN: 3540739661

Download Adsorption and Diffusion Book in PDF, ePub and Kindle

"Molecular Sieves - Science and Technology" covers, in a comprehensive manner, the science and technology of zeolites and all related microporous and mesoporous materials. The contributions are grouped together topically in such a way that each volume deals with a specific sub-field. Volume 7 treats fundamentals and analyses of adsorption and diffusion in zeolites including single-file diffusion. Various methods of measuring adsorption and diffusion are described and discussed.


Synthetic Membranes and Membrane Separation Processes

Synthetic Membranes and Membrane Separation Processes
Author: Takeshi Matsuura
Publisher: CRC Press
Total Pages: 477
Release: 2020-09-10
Genre: Science
ISBN: 1000102904

Download Synthetic Membranes and Membrane Separation Processes Book in PDF, ePub and Kindle

Synthetic Membranes and Membrane Separation Processes addresses both fundamental and practical aspects of the subject. Topics discussed in the book cover major industrial membrane separation processes, including reverse osmosis, ultrafiltration, microfiltration, membrane gas and vapor separation, and pervaporation. Membrane materials, membrane preparation, membrane structure, membrane transport, membrane module and separation design, and applications are discussed for each separation process. Many problem-solving examples are included to help readers understand the fundamental concepts of the theory behind the processes. The book will benefit practitioners and students in chemical engineering, environmental engineering, and materials science.


Emerging Developments and Applications of Low Temperature Plasma

Emerging Developments and Applications of Low Temperature Plasma
Author: Shahzad, Aamir
Publisher: IGI Global
Total Pages: 239
Release: 2021-12-17
Genre: Science
ISBN: 1799884007

Download Emerging Developments and Applications of Low Temperature Plasma Book in PDF, ePub and Kindle

Low temperature plasma in medicine is a new field that rose from the research in the application of cold plasmas in bioengineering. Plasma medicine is an innovative and promising multidisciplinary novel field of research covering plasma physics, life sciences, and clinical medicine to apply physical plasma for therapeutic applications. Emerging Developments and Applications of Low Temperature Plasma explores all areas of experimental, computational, and theoretical study of low temperature and atmospheric plasmas and provides a collection of exciting new research on the fundamental aspects of low temperature and pressure plasmas and their applications. Covering topics such as carbon nanotubes, foodborne pathogens, and plasma formation, this book is an essential resource for research groups, plasma-based industries, plasma aerodynamics industries, metal and cutlery industries, medical institutions, researchers, and academicians.


Understanding Molecular Simulation

Understanding Molecular Simulation
Author: Daan Frenkel
Publisher: Elsevier
Total Pages: 661
Release: 2001-10-19
Genre: Science
ISBN: 0080519989

Download Understanding Molecular Simulation Book in PDF, ePub and Kindle

Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: Transition path sampling and diffusive barrier crossing to simulaterare events Dissipative particle dynamic as a course-grained simulation technique Novel schemes to compute the long-ranged forces Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations Multiple-time step algorithms as an alternative for constraints Defects in solids The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.