Moisture Transport In Cement Based Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Moisture Transport In Cement Based Materials PDF full book. Access full book title Moisture Transport In Cement Based Materials.

Moisture Transport in Cement Based Materials

Moisture Transport in Cement Based Materials
Author: Javier Eduardo Castro
Publisher:
Total Pages: 213
Release: 2011
Genre: Concrete
ISBN:

Download Moisture Transport in Cement Based Materials Book in PDF, ePub and Kindle

The durability of concrete subjected to aggressive environments depends largely on the transport properties of the concrete. These transport properties are influenced by the volume of pores as well as the connectivity of the pore network. Three main mechanisms can be used to describe transport in cementitious systems: permeability, diffusion and absorption. Permeability is the measure of the flow of water under a pressure gradient. Diffusion is the movement of ions due to a concentration gradient. Absorption can be described as the ability to take in water by means of capillary suction. It is important to note that absorption occurs on a much faster time scale than diffusion. A large fraction of concrete in service is only partly saturated and the initial ingress of fluid is influenced, at least in part, by capillary absorption. As such, fluid (water) absorption has been used as an important factor for quantifying the durability of cementitious systems and it is being increasingly used by specifiers and in forensic studies to provide a parameter that can describe an aspect of concrete durability. For this reason the water absorption test is the focus of the first part of this thesis. The influence of preconditioning and initial moisture content was assessed as it relates to the water absorption test measurements. The results confirm that the test is considerably affected by the relative humidity of the samples before starting the test, which if not properly accounted for can lead to a misunderstanding of the actual absorption behavior. It was also observed that the conditioning procedure described in ASTM C1585 is not able to eliminate the "moisture history" of the samples. As such modifications to the standard test procedure are suggested. Further, the absorption behavior was investigated when salts were present in the samples or as a part of the absorbing fluid. Tests were performed on concrete using different aqueous solutions containing deicing salts. The rate of fluid absorption was generally lower for aqueous solutions containing deicing salts than it was for water (with the exception of low concentrations of NaCl). The change in the rate of aqueous fluid absorption was proportional to the square root of the ratio of surface tension and viscosity of the absorbed fluid. Experimental data indicates that concretes that had previously been exposed to deicing solutions can also exhibit reduced rate of absorption, even if water is the fluid being absorbed. The second part of this thesis is focused on the internal curing for concrete and its effect on the transport properties. The increased propensity for shrinkage cracking in low waterto- cement ratio (w/c) concrete has inspired the development of new technologies that can reduce the risk of early-age cracking. One of these is internal curing. Internal curing uses pre-wetted lightweight aggregate (LWA) to supply "curing water" to low w/c paste as it hydrates. Significant research has been performed to determine the effects of internal curing on shrinkage and stress development; however, relatively little detailed information exists about the effects of internal curing on fluid transport properties such as water absorption. In order to determine the mixture proportions for internally cured concretes information about the water absorption and water desorption properties of the lightweight aggregate is needed. Unfortunately, these properties are not easy to obtain accurately. This work studies the absorption and desorption properties of commercially available expanded shale, clay and slate lightweight aggregates. This research determines these properties so that they can be efficiently used in proportioning concrete for internal curing. Further, it was shown that by normalizing the results general trends on material behavior can be obtained that are quite useful in proportioning the mixtures. After characterizing the properties of the aggregates to be used for internal curing, this research examines the absorption of water into low w/c mortar specimens made with prewetted lightweight aggregates. These results indicate that the inclusion of LWA can reduce the water absorption of mortar specimens. This observation was reinforced with electrical conductivity measurements that exhibited similar reductions. In addition, this work analyzes the potential use of internal curing in concrete systems with w/c higher than normally used (w/c of 0.30, 0.36, 0.42 and 0.45) to increase the durability of the concrete. Test results show that internal curing can be useful to improve the durability of concretes prepared with this wider range of w/c. The benefits of using internal curing on the transport properties can be explained by an increase in the hydration of the cement. This was assessed using isothermal calorimeter, internal relative humidity, scanning electron microscopy and an atomic force microscopy. Further, in addition to reducing the porosity, the increased hydration appears to reduce the tortuosity by preferentially hydrating the interfacial regions around the lightweight aggregate.


Moisture Storage and Transport in Concrete

Moisture Storage and Transport in Concrete
Author: Lutz H. Franke
Publisher: John Wiley & Sons
Total Pages: 357
Release: 2024-07-29
Genre: Technology & Engineering
ISBN: 352735378X

Download Moisture Storage and Transport in Concrete Book in PDF, ePub and Kindle

Comprehensive insight on moisture transport in cement-based materials by means of experimental investigations and computer simulations Moisture Storage and Transport in Concrete explores how moisture moves through cementitious materials, focusing on its absorption, storage, and distribution with the help of experimental investigations and computer simulations. The text discusses the different ways moisture moves, such as through vapor or capillary action, as well as how it affects the properties of cement-based materials, offering new insights and models to help understand and predict moisture behavior in these materials, which can be important for construction and maintenance. After a short introduction to the topic, the text is split into five parts. Part I covers surface energetic principles for moisture storage in porous materials. Part II explores real pore structure and calculation methods for composition parameters. Part III explains basic equations for the description of moisture transport. Part IV discusses experimental investigation results with regard to the modeling of moisture transport in concrete materials. Part V showcases modeling of moisture transport, taking into account sorption hysteresis and time-dependent material changes. Written by a highly qualified author, Moisture Storage and Transport in Concrete also includes discussion on: Dependence of surface energy of water on temperature, on relative humidity of air, and for aqueous salt solutions Calculation of the pore size dependent distribution of inner surfaces using the moisture storage function Temperature influence on the capillary transport coefficients and differences between capillary pressure and hydraulic external pressure Adsorption and desorption isotherms of the CEMI reference material and causes of differences between adsorption and desorption isotherms Sorption isotherms and scanning isotherms of hardened cement paste and concrete Moisture Storage and Transport in Concrete is an essential reference to help researchers and professionals to make informed decisions for the construction of concrete-based infrastructure, enabling them to avoid common issues such as corrosion of reinforcement steel, deterioration of concrete strength, and the growth of mold and mildew.


Interface Influence on Moisture Transport in Building Components

Interface Influence on Moisture Transport in Building Components
Author: João M. P. Q. Delgado
Publisher: Springer Nature
Total Pages: 62
Release: 2019-09-10
Genre: Technology & Engineering
ISBN: 3030308030

Download Interface Influence on Moisture Transport in Building Components Book in PDF, ePub and Kindle

The knowledge of moisture migration inside building materials and construction building components is decisive for the way they behave when in use. The durability, waterproofing, degrading aspect and thermal behaviour of these materials are strongly influenced by the existence of moisture within their interior, which provoke changes in their normal performance, something that is normally hard to predict. Due to the awareness of this problem, the scientific community have per-formed various studies about the existence of moisture inside porous materials. The complex aspects of moisture migration phenomenon tended to encompass monolithic building elements, since the existence of joints or layers contributes to the change of moisture transfer along the respective building element that contribute to the change of mass transfer law. The presentation of an experimental analyses concerning moisture transfer in the interface of material that makes up masonry is described in such a way as to evaluate the durability and/or avoid building damages. In this work it was analysed, during the wetting process, the influence of different types of interface, commonly observed in masonry, such as: perfect con-tact, joints of cement mortar, lime mortar, and the air space interface. The results allow the calculation of the hygric resistance. With these results, it is possible to use any advanced hygrothermal simulation program to study the water transport in building elements, considering different interfaces and their hygric resistance.


Water Transport in Brick, Stone and Concrete

Water Transport in Brick, Stone and Concrete
Author: Christopher Hall
Publisher: CRC Press
Total Pages: 381
Release: 2011-10-31
Genre: Technology & Engineering
ISBN: 020386221X

Download Water Transport in Brick, Stone and Concrete Book in PDF, ePub and Kindle

This book provides a unified description of transport processes involving saturated and unsaturated flow in inorganic building materials and structures. It emphasizes fundamental physics and materials science, mathematical description, and experimental measurement as a basis for engineering design and construction practice. Water Transport in Brick


Moisture Storage and Transport in Concrete

Moisture Storage and Transport in Concrete
Author: Lutz H. Franke
Publisher: John Wiley & Sons
Total Pages: 357
Release: 2024-04-23
Genre: Technology & Engineering
ISBN: 3527846859

Download Moisture Storage and Transport in Concrete Book in PDF, ePub and Kindle

Moisture Storage and Transport in Concrete Comprehensive insight on moisture transport in cement-based materials by means of experimental investigations and computer simulations Moisture Storage and Transport in Concrete explores how moisture moves through cementitious materials, focusing on its absorption, storage, and distribution with the help of experimental investigations and computer simulations. The text discusses the different ways moisture moves, such as through vapor or capillary action, as well as how it affects the properties of cement-based materials, offering new insights and models to help understand and predict moisture behavior in these materials, which can be important for construction and maintenance. After a short introduction to the topic, the text is split into five chapters. Chapter 1 covers surface energetic principles for moisture storage in porous materials. Chapter 2 explores real pore structure and calculation methods for composition parameters. Chapter 3 explains basic equations for the description of moisture transport. Chapter 4 discusses experimental investigation results with regard to the modeling of moisture transport in concrete materials. Chapter 5 showcases modeling of moisture transport, taking into account sorption hysteresis and time-dependent material changes. Written by a highly qualified author, Moisture Storage and Transport in Concrete also includes discussion on: Dependence of surface energy of water on temperature, on relative humidity of air, and for aqueous salt solutions Calculation of the pore size dependent distribution of inner surfaces using the moisture storage function Temperature influence on the capillary transport coefficients and differences between capillary pressure and hydraulic external pressure Adsorption and desorption isotherms of the CEMI reference material and causes of differences between adsorption and desorption isotherms Sorption isotherms and scanning isotherms of hardened cement paste and concrete Modeling of vapor transport and drying by evaporation of concrete Moisture Storage and Transport in Concrete is an essential reference to help researchers and professionals to make informed decisions for the construction of concrete-based infrastructure, enabling them to avoid common issues such as corrosion of reinforcement steel, deterioration of concrete strength, and the growth of mold and mildew.


Transport Processes in Concrete

Transport Processes in Concrete
Author: Robert Cerny
Publisher: CRC Press
Total Pages: 560
Release: 2002-04-25
Genre: Technology & Engineering
ISBN: 1482289105

Download Transport Processes in Concrete Book in PDF, ePub and Kindle

Transport Processes in Concrete presents a comprehensive survey of the physical and chemical processes and transport mechanisms in concrete, and analyses their significance for the movement of heat, moisture and chemical compounds.A critical analysis of the available mathematical models is given, and from this analysis the most suitable models to d


Characterization and Modeling of Moisture Flow Through Hydrating Cement-based Materials Under Early-age Drying and Shrinkage Conditions

Characterization and Modeling of Moisture Flow Through Hydrating Cement-based Materials Under Early-age Drying and Shrinkage Conditions
Author: Mehdi Bakhshi
Publisher:
Total Pages: 266
Release: 2011
Genre: Concrete
ISBN:

Download Characterization and Modeling of Moisture Flow Through Hydrating Cement-based Materials Under Early-age Drying and Shrinkage Conditions Book in PDF, ePub and Kindle

Early-age cracks in fresh concrete occur mainly due to high rate of surface evaporation and restraint offered by the contracting solid phase. Available test methods that simulate severe drying conditions, however, were not originally designed to focus on evaporation and transport characteristics of the liquid-gas phases in a hydrating cementitious microstructure. Therefore, these tests lack accurate measurement of the drying rate and data interpretation based on the principles of transport properties is limited. A vacuum-based test method capable of simulating early-age cracks in 2-D cement paste is developed which continuously monitors the weight loss and changes to the surface characteristics. 2-D crack evolution is documented using time-lapse photography. Effects of sample size, w/c ratio, initial curing and fiber content are studied. In the subsequent analysis, the cement paste phase is considered as a porous medium and moisture transport is described based on surface mass transfer and internal moisture transport characteristics. Results indicate that drying occurs in two stages: constant drying rate period (stage I), followed by a falling drying rate period (stage II). Vapor diffusion in stage I and unsaturated flow within porous medium in stage II determine the overall rate of evaporation. The mass loss results are analyzed using diffusion-based models. Results show that moisture diffusivity in stage I is higher than its value in stage II by more than one order of magnitude. The drying model is used in conjunction with a shrinkage model to predict the development of capillary pressures. Similar approach is implemented in drying restrained ring specimens to predict 1-D crack width development. An analytical approach relates diffusion, shrinkage, creep, tensile and fracture properties to interpret the experimental data. Evaporation potential is introduced based on the boundary layer concept, mass transfer, and a driving force consisting of the concentration gradient. Effect of wind velocity is reflected on Reynolds number which affects the boundary layer on sample surface. This parameter along with Schmidt and Sherwood numbers are used for prediction of mass transfer coefficient. Concentration gradient is shown to be a strong function of temperature and relative humidity and used to predict the evaporation potential. Results of modeling efforts are compared with a variety of test results reported in the literature. Diffusivity data and results of 1-D and 2-D image analyses indicate significant effects of fibers on controlling early-age cracks. Presented models are capable of predicting evaporation rates and moisture flow through hydrating cement-based materials during early-age drying and shrinkage conditions.


Cement Based Materials

Cement Based Materials
Author: Hosam El-Din M. Saleh
Publisher: BoD – Books on Demand
Total Pages: 276
Release: 2018-10-10
Genre: Technology & Engineering
ISBN: 1789841534

Download Cement Based Materials Book in PDF, ePub and Kindle

Cement-based materials have been used by humans nearly since the dawn of civilization. The Egyptians used lime and gypsum cement to bind their aggregate materials, mud and straw, resulting in bricks that are used for building their famous Egyptian pyramids (between 3000 and 2500 BC). Hydrated cement is a cement material bonded together with water and used for building construction; it is characterized by acceptable chemical, physical, thermal, mechanical, and structural stability. It plays a main role in the creation of vessels for storage, roads to travel on, weather-resistant structure for protection, inert hard stabilizer for hazardous wastes, and so on. Due to the composition of these materials and their advantages, it has been practiced in different applications. Cement is an essential component of making concrete, the single most prevalent building material used worldwide for construction, skyscrapers, highways, tunnels, bridges, hydraulic dams, and railway ties. Besides their numerous desired properties, there are some undesirable features. To overcome these disadvantages, several studies were established to prepare, improve, and evaluate innovative cement-based materials. Despite its oldness and deep research, every year several methods and materials evolve and so do cement technology. This book intends to provide a comprehensive overview on recent advances in the evaluation of these materials.