Modern Techniques In Protein Nmr PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modern Techniques In Protein Nmr PDF full book. Access full book title Modern Techniques In Protein Nmr.

Modern Techniques in Protein NMR

Modern Techniques in Protein NMR
Author: N. Rama Krishna
Publisher: Springer Science & Business Media
Total Pages: 400
Release: 2006-03-16
Genre: Medical
ISBN: 0306470837

Download Modern Techniques in Protein NMR Book in PDF, ePub and Kindle

Volume 16 marks the beginning of a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. This volume is being followed by Volume 17 with the subtitle Structure Computation and Dynamics in Protein NMR. Volumes 16 and 17 present some of the recent, significant advances in biomolecular NMR field with emphasis on developments during the last five years. We are honored to have brought together in these volumes some of the world’s foremost experts who have provided broad leadership in advancing this field. Volume 16 contains advances in two broad categories: the first, Large Proteins, Complexes, and Membrane Proteins, and second, Pulse Methods. Volume 17, which will follow covers major advances in Computational Methods, and Structure and Dynamics. In the opening chapter of Volume 16, Marius Clore and Angela Gronenborn give a brief review of NMR strategies including the use of long range restraints in the structure determination of large proteins and protein complexes. In the next two chapters, Lewis Kay and Ron Venters and their collaborators describe state-of-t- art advances in the study of perdeuterated large proteins. They are followed by Stanley Opella and co-workers who present recent developments in the study of membrane proteins. (A related topic dealing with magnetic field induced residual dipolar couplings in proteins will appear in the section on Structure and Dynamics in Volume 17).


Protein NMR

Protein NMR
Author: Lawrence Berliner
Publisher: Springer
Total Pages: 193
Release: 2015-08-24
Genre: Science
ISBN: 1489976213

Download Protein NMR Book in PDF, ePub and Kindle

This book covers new techniques in protein NMR, from basic principles to state-of-the-art research. It covers a spectrum of topics ranging from a “toolbox” for how sequence-specific resonance assignments can be obtained using a suite of 2D and 3D NMR experiments and tips on how overlap problems can be overcome. Further topics include the novel applications of Overhauser dynamic nuclear polarization methods (DNP), assessing protein structure, and aspects of solid-state NMR of macroscopically aligned membrane proteins. This book is an ideal resource for students and researchers in the fields of biochemistry, chemistry, and pharmacology and NMR physics. Comprehensive and intuitively structured, this book examines protein NMR and new novel applications that include the latest technological advances. This book also has the features of: • A selection of various applications and cutting-edge advances, such as novel applications of Overhauser dynamic nuclear polarization methods (DNP) and a suite of 2D and 3D NMR experiments and tips on how overlap problems can be overcome • A pedagogical approach to the methodology • Engaging the reader and student with a clear, yet critical presentation of the applications


Modern Techniques in Protein NMR

Modern Techniques in Protein NMR
Author: N. Rama Krishna
Publisher: Springer
Total Pages: 0
Release: 1999-04-30
Genre: Medical
ISBN: 9780306459528

Download Modern Techniques in Protein NMR Book in PDF, ePub and Kindle

Volume 16 marks the beginning of a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. This volume is being followed by Volume 17 with the subtitle Structure Computation and Dynamics in Protein NMR. Volumes 16 and 17 present some of the recent, significant advances in biomolecular NMR field with emphasis on developments during the last five years. We are honored to have brought together in these volumes some of the world’s foremost experts who have provided broad leadership in advancing this field. Volume 16 contains advances in two broad categories: the first, Large Proteins, Complexes, and Membrane Proteins, and second, Pulse Methods. Volume 17, which will follow covers major advances in Computational Methods, and Structure and Dynamics. In the opening chapter of Volume 16, Marius Clore and Angela Gronenborn give a brief review of NMR strategies including the use of long range restraints in the structure determination of large proteins and protein complexes. In the next two chapters, Lewis Kay and Ron Venters and their collaborators describe state-of-t- art advances in the study of perdeuterated large proteins. They are followed by Stanley Opella and co-workers who present recent developments in the study of membrane proteins. (A related topic dealing with magnetic field induced residual dipolar couplings in proteins will appear in the section on Structure and Dynamics in Volume 17).


Structure Computation and Dynamics in Protein NMR

Structure Computation and Dynamics in Protein NMR
Author: N. Rama Krishna
Publisher: Springer Science & Business Media
Total Pages: 565
Release: 1999-06-30
Genre: Medical
ISBN: 0306459531

Download Structure Computation and Dynamics in Protein NMR Book in PDF, ePub and Kindle

Volume 17 is the second in a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. Volume 16, with the subtitle Modern Techniques in Protein NMR , is the first in this series. These two volumes present some of the recent, significant advances in the biomolecular NMR field with emphasis on developments during the last five years. We are honored to have brought together in these volume some of the world s foremost experts who have provided broad leadership in advancing this field. Volume 16 contains - vances in two broad categories: I. Large Proteins, Complexes, and Membrane Proteins and II. Pulse Methods. Volume 17 contains major advances in: I. Com- tational Methods and II. Structure and Dynamics. The opening chapter of volume 17 starts with a consideration of some important aspects of modeling from spectroscopic and diffraction data by Wilfred van Gunsteren and his colleagues. The next two chapters deal with combined automated assignments and protein structure determination, an area of intense research in many laboratories since the traditional manual methods are often inadequate or laborious in handling large volumes of NMR data on large proteins. First, Werner Braun and his associates describe their experience with the NOAH/DIAMOD protocol developed in their laboratory.


Protein NMR Techniques

Protein NMR Techniques
Author: A. Kristina Downing
Publisher: Springer Science & Business Media
Total Pages: 494
Release: 2008-02-03
Genre: Science
ISBN: 1592598099

Download Protein NMR Techniques Book in PDF, ePub and Kindle

When I was asked to edit the second edition of Protein NMR Techniques, my first thought was that the time was ripe for a new edition. The past several years have seen a surge in the development of novel methods that are truly revolutionizing our ability to characterize biological macromolecules in terms of speed, accuracy, and size limitations. I was particularly excited at the prospect of making these techniques accessible to all NMR labs and for the opportunity to ask the experts to divulge their hints and tips and to write, practically, about the methods. I commissioned 19 chapters with wide scope for Protein NMR Techniques, and the volume has been organized with numerous themes in mind. Chapters 1 and 2 deal with recombinant protein expression using two organisms, E. coli and P. pastoris, that can produce high yields of isotopically labeled protein at a reasonable cost. Staying with the idea of isotopic labeling, Chapter 3 describes methods for perdeuteration and site-specific protonation and is the first of several chapters in the book that is relevant to studies of higher molecular weight systems. A different, but equally powerful, method that uses molecular biology to “edit” the spectrum of a large molecule using segmental labeling is presented in Chapter 4. Having successfully produced a high molecular weight target for study, the next logical step is data acquisition. Hence, the final chapter on this theme, Chapter 5, describes TROSY methods for stru- ural studies.


Protein NMR Spectroscopy

Protein NMR Spectroscopy
Author: John Cavanagh
Publisher: Elsevier
Total Pages: 915
Release: 2010-07-21
Genre: Science
ISBN: 008047103X

Download Protein NMR Spectroscopy Book in PDF, ePub and Kindle

Protein NMR Spectroscopy, Second Edition combines a comprehensive theoretical treatment of NMR spectroscopy with an extensive exposition of the experimental techniques applicable to proteins and other biological macromolecules in solution. Beginning with simple theoretical models and experimental techniques, the book develops the complete repertoire of theoretical principles and experimental techniques necessary for understanding and implementing the most sophisticated NMR experiments. Important new techniques and applications of NMR spectroscopy have emerged since the first edition of this extremely successful book was published in 1996. This updated version includes new sections describing measurement and use of residual dipolar coupling constants for structure determination, TROSY and deuterium labeling for application to large macromolecules, and experimental techniques for characterizing conformational dynamics. In addition, the treatments of instrumentation and signal acquisition, field gradients, multidimensional spectroscopy, and structure calculation are updated and enhanced. The book is written as a graduate-level textbook and will be of interest to biochemists, chemists, biophysicists, and structural biologists who utilize NMR spectroscopy or wish to understand the latest developments in this field. Provides an understanding of the theoretical principles important for biological NMR spectroscopy Demonstrates how to implement, optimize and troubleshoot modern multi-dimensional NMR experiments Allows for the capability of designing effective experimental protocols for investigations of protein structures and dynamics Includes a comprehensive set of example NMR spectra of ubiquitin provides a reference for validation of experimental methods


Fundamentals of Protein NMR Spectroscopy

Fundamentals of Protein NMR Spectroscopy
Author: Gordon S. Rule
Publisher: Springer Science & Business Media
Total Pages: 543
Release: 2006-02-16
Genre: Science
ISBN: 1402035004

Download Fundamentals of Protein NMR Spectroscopy Book in PDF, ePub and Kindle

NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data processing. End of chapter exercises are included to emphasize important concepts. Fundamentals of Protein NMR Spectroscopy not only offer students a systematic, in-depth, understanding of modern NMR spectroscopy and its application to biomolecular systems, but will also be a useful reference for the experienced investigator.


Biological Magnetic Resonance

Biological Magnetic Resonance
Author: Lawrence J. Berliner
Publisher:
Total Pages:
Release: 1978
Genre: Biology
ISBN:

Download Biological Magnetic Resonance Book in PDF, ePub and Kindle

Annotation. Describes techniques and applications that have emerged since the previous volume in the series on spin labeling in 1989, and marks a shift in the series to topic-focused volumes. Among the topics are the analysis of spin-label line shapes with novel inhomogeneous broadening from different components widths and applications to spatially disconnected domains in membranes, a comparison of spin-label spectra at X-band and W-band, the site- directed spin labeling of membrane proteins and of interactions between peptides and membranes, spin-labeled nucleic acids, and electron paramagnetic resonance studies of living animals and related model systems. Annotation copyrighted by Book News, Inc., Portland, OR.


Modern Protein Chemistry

Modern Protein Chemistry
Author: Gary C. Howard
Publisher: CRC Press
Total Pages: 272
Release: 2001-09-12
Genre: Medical
ISBN: 1420036521

Download Modern Protein Chemistry Book in PDF, ePub and Kindle

In recent years, interest in proteins has surged. This resurgence has been driven by the expansion of the post-genomic era when structural genomics and proteomics require new techniques in protein chemistry and new applications of older techniques. Protein chemistry methods are used by nearly every discipline of biomedical research. Many techniques


Improved Methods for Characterization of Protein Dynamics by NMR spectroscopy and Studies of the EphB2 Kinase Domain

Improved Methods for Characterization of Protein Dynamics by NMR spectroscopy and Studies of the EphB2 Kinase Domain
Author: Alexandra Ahlner
Publisher: Linköping University Electronic Press
Total Pages: 79
Release: 2015-04-15
Genre: Nuclear magnetic resonance spectroscopy
ISBN: 9175191032

Download Improved Methods for Characterization of Protein Dynamics by NMR spectroscopy and Studies of the EphB2 Kinase Domain Book in PDF, ePub and Kindle

Proteins are essential for all known forms of life and in many lethal diseases protein failure is the cause of the disease. To understand proteins and the processes they are involved in, it is valuable to know their structures as well as their dynamics and interactions. The structures may not be directly inspected because proteins are too small to be visible in a light microscope, which is why indirect methods such as nuclear magnetic resonance (NMR) spectroscopy have to be utilized. This method provides atomic information about the protein and, in contrast to other methods with similar resolution, the measurements are performed in solution resulting in more physiological conditions, enabling analysis of dynamics. Important dynamical processes are the ones on the millisecond timeframe, which may contribute to interactions of proteins and their catalysis of chemical reactions, both of significant value for the function of the proteins. To better understand proteins, not only do we need to study them, but also develop the methods we are using. This thesis presents four papers about improved NMR techniques as well as a fifth where the kinase domain of ephrinB receptor 2 (EphB2) has been studied regarding the importance of millisecond dynamics and interactions for the activation process. The first paper presents the software COMPASS, which combines statistics and the calculation power of a computer with the flexibility and experience of the user to facilitate and speed up the process of assigning NMR signals to the atoms in the protein. The computer program PINT has been developed for easier and faster evaluation of NMR experiments, such as those that evaluate protein dynamics. It is especially helpful for NMR signals that are difficult to distinguish, so called overlapped peaks, and the soft- ware also converts the detected signals to the indirectly measured physical quantities, such as relaxation rate constants, principal for dynamics. Next are two new versions of the Carr-Purcell-Maiboom-Gill (CPMG) dispersion pulse sequences, designed to measure millisecond dynamics in a way so that the signals are more separated than in standard experiments, to reduce problems with overlaps. To speed up the collection time of the data set, a subset is collected and the entire data set is then reconstructed, by multi-dimensional decomposition co-processing. Described in the thesis is also a way to produce suitably labeled proteins, to detect millisecond dynamics at C? positions in proteins, using the CPMG dispersion relaxation experiment at lower protein concentrations. Lastly, the kinase domain of EphB2 is shown to be more dynamic on the millisecond time scale as well as more prone to interact with itself in the active form than in the inactive one. This is important for the receptor function of the protein, when and how it mediates signals. To conclude, this work has extended the possibilities to study protein dynamics by NMR spectroscopy and contributed to increased understanding of the activation process of EphB2 and its signaling mechanism.