Modern Emc Analysis Techniques Volume Ii PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modern Emc Analysis Techniques Volume Ii PDF full book. Access full book title Modern Emc Analysis Techniques Volume Ii.

Modern EMC Analysis Techniques Volume II

Modern EMC Analysis Techniques Volume II
Author: Nikolaos Kantartzis
Publisher: Springer Nature
Total Pages: 238
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031017064

Download Modern EMC Analysis Techniques Volume II Book in PDF, ePub and Kindle

The objective of this two-volume book is the systematic and comprehensive description of the most competitive time-domain computational methods for the efficient modeling and accurate solution of modern real-world EMC problems. Intended to be self-contained, it performs a detailed presentation of all well-known algorithms, elucidating on their merits or weaknesses, and accompanies the theoretical content with a variety of applications. Outlining the present volume, numerical investigations delve into printed circuit boards, monolithic microwave integrated circuits, radio frequency microelectromechanical systems as well as to the critical issues of electromagnetic interference, immunity, shielding, and signal integrity. Biomedical problems and EMC test facility characterizations are also thoroughly covered by means of diverse time-domain models and accurate implementations. Furthermore, the analysis covers the case of large-scale applications and electrostatic discharge problems, while special attention is drawn to the impact of contemporary materials in the EMC world, such as double negative metamaterials, bi-isotropic media, and several others. Table of Contents: Introduction / Printed Circuit Boards in EMC Structures / Electromagnetic Interference, Immunity, Shielding, and Signal Integrity / Bioelectromagnetic Problems: Human Exposure to Electromagnetic Fields / Time-Domain Characterization of EMC Test Facilities / Large-Scale EMC and Electrostatic Discharge Problems / Contemporary Material Modeling in EMC Applications


Modern EMC Analysis Techniques

Modern EMC Analysis Techniques
Author: Nikolaos V. Kantartzis
Publisher: Morgan & Claypool Publishers
Total Pages: 249
Release: 2008
Genre: Electromagnetic compatibility
ISBN: 1598293206

Download Modern EMC Analysis Techniques Book in PDF, ePub and Kindle

The objective of this two-volume book is the systematic and comprehensive description of the most competitive time-domain computational methods for the efficient modeling and accurate solution of modern real-world EMC problems. Intended to be self-contained, it performs a detailed presentation of all well-known algorithms, elucidating on their merits or weaknesses, and accompanies the theoretical content with a variety of applications. Outlining the present volume, numerical investigations delve into printed circuit boards, monolithic microwave integrated circuits, radio frequency microelectromechanical systems as well as to the critical issues of electromagnetic interference, immunity, shielding, and signal integrity. Biomedical problems and EMC test facility characterizations are also thoroughly covered by means of diverse time-domain models and accurate implementations. Furthermore, the analysis covers the case of large-scale applications and electrostatic discharge problems, while special attention is drawn to the impact of contemporary materials in the EMC world, such as double negative metamaterials, bi-isotropic media, and several others.


Modern EMC Analysis Techniques Volume I

Modern EMC Analysis Techniques Volume I
Author: Nikolaos V. Kantartzis
Publisher: Morgan & Claypool Publishers
Total Pages: 234
Release: 2008-07-08
Genre: Technology & Engineering
ISBN: 1598293192

Download Modern EMC Analysis Techniques Volume I Book in PDF, ePub and Kindle

The objective of this two-volume book is the systematic and comprehensive description of the most competitive time-domain computational methods for the efficient modeling and accurate solution of contemporary real-world EMC problems. Intended to be self-contained, it performs a detailed presentation of all well-known algorithms, elucidating on their merits or weaknesses, and accompanies the theoretical content with a variety of applications. Outlining the present volume, the analysis covers the theory of the finite-difference time-domain, the transmission-line matrix/modeling, and the finite integration technique. Moreover, alternative schemes, such as the finite-element, the finitevolume, the multiresolution time-domain methods and many others, are presented, while particular attention is drawn to hybrid approaches. To this aim, the general aspects for the correct implementation of the previous algorithms are also exemplified. At the end of every section, an elaborate reference on the prominent pros and possible cons, always in the light of EMC modeling, assists the reader to retrieve the gist of each formulation and decide on his/her best possible selection according to the problem under investigation. Table of Contents: Fundamental Time-Domain Methodologies for EMC Analysis / Alternative Time-Domain Techniques in EMC Modeling / Principal Implementation Issues of Time-Domain EMC Simulation


Multiresolution Frequency Domain Technique for Electromagnetics

Multiresolution Frequency Domain Technique for Electromagnetics
Author: Mesut Gökten
Publisher: Springer Nature
Total Pages: 124
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031017145

Download Multiresolution Frequency Domain Technique for Electromagnetics Book in PDF, ePub and Kindle

In this book, a general frequency domain numerical method similar to the finite difference frequency domain (FDFD) technique is presented. The proposed method, called the multiresolution frequency domain (MRFD) technique, is based on orthogonal Battle-Lemarie and biorthogonal Cohen-Daubechies-Feauveau (CDF) wavelets. The objective of developing this new technique is to achieve a frequency domain scheme which exhibits improved computational efficiency figures compared to the traditional FDFD method: reduced memory and simulation time requirements while retaining numerical accuracy. The newly introduced MRFD scheme is successfully applied to the analysis of a number of electromagnetic problems, such as computation of resonance frequencies of one and three dimensional resonators, analysis of propagation characteristics of general guided wave structures, and electromagnetic scattering from two dimensional dielectric objects. The efficiency characteristics of MRFD techniques based on different wavelets are compared to each other and that of the FDFD method. Results indicate that the MRFD techniques provide substantial savings in terms of execution time and memory requirements, compared to the traditional FDFD method. Table of Contents: Introduction / Basics of the Finite Difference Method and Multiresolution Analysis / Formulation of the Multiresolution Frequency Domain Schemes / Application of MRFD Formulation to Closed Space Structures / Application of MRFD Formulation to Open Space Structures / A Multiresolution Frequency Domain Formulation for Inhomogeneous Media / Conclusion


Selected Asymptotic Methods with Applications to Electromagnetics and Antennas

Selected Asymptotic Methods with Applications to Electromagnetics and Antennas
Author: George Fikioris
Publisher: Springer Nature
Total Pages: 187
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031017161

Download Selected Asymptotic Methods with Applications to Electromagnetics and Antennas Book in PDF, ePub and Kindle

This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include some recent, direct applications to antennas and computational electromagnetics. Then, specific methods are discussed. These include integration by parts and the Riemann-Lebesgue lemma, the use of contour integration in conjunction with other methods, techniques related to Laplace's method and Watson's lemma, the asymptotic behavior of certain Fourier sine and cosine transforms, and the Poisson summation formula (including its version for finite sums). Often underutilized in the literature are asymptotic techniques based on the Mellin transform; our treatment of this subject complements the techniques presented in our recent Synthesis Lecture on the exact (not asymptotic) evaluation of integrals.


Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Scattering from Chiral Objects

Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Scattering from Chiral Objects
Author: Erdogan Alkan
Publisher: Springer Nature
Total Pages: 119
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031017153

Download Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Scattering from Chiral Objects Book in PDF, ePub and Kindle

This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid (DG-FDFD) approach for general bianisotropic materials. The validity of the derived formulations for different scattering problems has been shown by comparing the obtained results to exact and other solutions obtained using different numerical methods. Table of Contents: Introduction / Chiral Media / Basics of the Finite-Difference Frequency-Domain (FDFD) Method / The Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Bianisotropic Medium / Scattering FromThree Dimensional Chiral Structures / ImprovingTime and Memory Efficiencies of FDFD Methods / Conclusions / Appendix A: Notations / Appendix B: Near to Far FieldTransformation


Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics
Author: Stephen Gedney
Publisher: Springer Nature
Total Pages: 242
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031017129

Download Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics Book in PDF, ePub and Kindle

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing


EMC Analysis Methods and Computational Models

EMC Analysis Methods and Computational Models
Author: Frederick M. Tesche
Publisher: John Wiley & Sons
Total Pages: 656
Release: 1996-12-26
Genre: Technology & Engineering
ISBN: 9780471155737

Download EMC Analysis Methods and Computational Models Book in PDF, ePub and Kindle

Describes and illustrates various modeling techniques which are applicable to the area of EMC and includes material previously available only in international reports or other hard-to-obtain references. Electromagnetic topology, lumped-parameter circuit models, the radiation process, scalar diffraction theory for apertures, transmission line modeling, and models for shielding are among the topics discussed. The accompanying disk contains four programs based on the models developed in the text and can be used to calculate diverse transmission line responses.


EMI/EMC Computational Modeling Handbook

EMI/EMC Computational Modeling Handbook
Author: Bruce R. Archambeault
Publisher: Springer Science & Business Media
Total Pages: 327
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461515572

Download EMI/EMC Computational Modeling Handbook Book in PDF, ePub and Kindle

The application of computational electromagnetics to real-world EMI/EMC engineering is an emerging technology. With the advancement in electronics, EMI/EMC issues have greatly increased in complexity. As a result, it is no longer possible to rely exclusively on traditional techniques and expect cost-effective solutions. The first edition of this book introduced computational electromagnetics to EMI/EMC engineering. This second edition continues the introduction of computational electromagnetics to EMI/EMC engineering, but also adds new modeling techniques, namely the Partial Element Equivalent Circuit method and the Transmission Line Matrix method, and updates to the science of EMI/EMC modeling that have occurred since the first edition was published. This book combines the essential elements of electromagnetic theory, computational techniques, and EMI/EMC engineering as they apply to computational modeling for EMI/EMC applications. It is intended to provide an understanding for those interested in incorporating modeling techniques in their work. A variety of modeling techniques are needed for anyone interested in using computational modeling in the real world. This book includes an introduction of all the popular modeling techniques, such as the Finite-Difference Time-Domain method, the Method of Moments, the Finite Element Method, the Partial Element Equivalent Circuit method and the Transmission Line Matrix method. EMI/EMC Computational Modeling Handbook, Second Edition will serve many different levels of readers. It will serve as a basic introduction to modeling as applied to EMI/EMC problems for the engineer interested in getting started, and it will help the person already using modeling as a tool to become more effective in using different modeling techniques. It will also be useful for the engineer who is familiar with computational techniques and wishes to apply them to EMI/EMC applications. This book can also be used as a text to help students of electromagnetic theory and application better understand real-world challenges facing engineers.