Modeling Of Sulfate Reduction In An Entrained Flow Black Liquor Gasifier PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling Of Sulfate Reduction In An Entrained Flow Black Liquor Gasifier PDF full book. Access full book title Modeling Of Sulfate Reduction In An Entrained Flow Black Liquor Gasifier.

Modeling of Sulfate Reduction in an Entrained-flow Black Liquor Gasifier

Modeling of Sulfate Reduction in an Entrained-flow Black Liquor Gasifier
Author: Narongsak Jivakanun
Publisher:
Total Pages: 324
Release: 1993
Genre: Sulfate waste liquor
ISBN:

Download Modeling of Sulfate Reduction in an Entrained-flow Black Liquor Gasifier Book in PDF, ePub and Kindle

Black liquor gasification is one of the promising alternatives to eliminate the drawbacks of the conventional recovery unit of the kraft process. A numerical model has been developed to simulate an industrial pilot scale entrained-flow gasifier currently operating at Tampere, Finland. The objective of the model is to investigate the effect of the key operating parameters on the efficiency of sulfate reduction during black liquor gasification. The results of the sensitivity analysis indicates that reduction is dependent of the ratio of the amount of carbon in black liquor to the amount of air being fed into the system, the reactor temperature and the initial particle size. Decreasing the air ratio can improve the efficiency of reduction. The rates of both reduction and carbon gasification increase with increasing in temperature. Higher reduction can be obtained by increasing the initial particle size. However, the values of those parameters need to be optimized based on the desired degree of sulfate reduction and the completion of carbon conversion. Economic considerations such as the length of the gasifier needed to achieve both high reduction efficiency and carbon conversion also need to be considered when selecting operating conditions.


Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences
Author: Wade H. Shafer
Publisher: Springer Science & Business Media
Total Pages: 341
Release: 2012-12-06
Genre: Science
ISBN: 1461559693

Download Masters Theses in the Pure and Applied Sciences Book in PDF, ePub and Kindle

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this jOint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 40 (thesis year 1995) a total of 10,746 thesis titles from 19 Canadian and 144 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 40 reports theses submitted in 1995, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.


Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment

Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment
Author:
Publisher:
Total Pages:
Release: 2008
Genre:
ISBN:

Download Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment Book in PDF, ePub and Kindle

The University of Utah's project 'Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment' (U.S. DOE Cooperative Agreement DE-FC26-04NT42261) was a response to U.S. DOE/NETL solicitation DE-PS36-04GO94002, 'Biomass Research and Development Initiative' Topical Area 4-Kraft Black Liquor Gasification. The project began September 30, 2004. The objective of the project was to improve the understanding of black liquor conversion in high pressure, high temperature reactors that gasify liquor through partial oxidation with either air or oxygen. The physical and chemical characteristics of both the gas and condensed phase were to be studied over the entire range of liquor conversion, and the rates and mechanisms of processes responsible for converting the liquor to its final smelt and syngas products were to be investigated. This would be accomplished by combining fundamental, lab-scale experiments with measurements taken using a new semi-pilot scale pressurized entrained-flow gasifier. As a result of insufficient availability of funds and changes in priority within the Office of Biomass Programs of the U.S. Department of Energy, the research program was terminated in its second year. In total, only half of the budgeted funding was made available for the program, and most of this was used during the first year for construction of the experimental systems to be used in the program. This had a severe impact on the program. As a consequence, most of the planned research was unable to be performed. Only studies that relied on computational modeling or existing experimental facilities started early enough to deliver useful results by the time to program was terminated Over the course of the program, small scale (approx. 1 ton/day) entrained-flow gasifier was designed and installed at the University of Utah's off-campus Industrial Combustion and Gasification Research Facility. The system is designed to operate at pressures as high as 32 atmospheres, and at temperatures as high as 1500 C (2730 F). Total black liquor processing capacity under pressurized, oxygen-blown conditions should be in excess of 1 ton black liquor solids per day. Many sampling ports along the conversion section of the system will allow detailed analysis of the environment in the gasifier under industrially representative conditions. Construction was mostly completed before the program was terminated, but resources were insufficient to operate the system. A system for characterizing black liquor sprays in hot environments was designed and constructed. Silhouettes of black liquor sprays formed by injection of black liquor through a twin fluid (liquor and atomizing air) nozzle were videoed with a high-speed camera, and the resulting images were analyzed to identify overall characteristics of the spray and droplet formation mechanisms. The efficiency of liquor atomization was better when the liquor was injected through the center channel of the nozzle, with atomizing air being introduced in the annulus around the center channel, than when the liquor and air feed channels were reversed. Atomizing efficiency and spray angle increased with atomizing air pressure up to a point, beyond which additional atomizing air pressure had little effect. Analysis of the spray patterns indicates that two classifications of droplets are present, a finely dispersed 'mist' of very small droplets and much larger ligaments of liquor that form at the injector tip and form one or more relatively large droplets. This ligament and subsequent large droplet formation suggests that it will be challenging to obtain a narrow distribution of droplet sizes when using an injector of this design. A model for simulating liquor spray and droplet formation was developed by Simulent, Inc. of Toronto. The model was able to predict performance when spraying water that closely matched the vendor specifications. Simulation of liquor spray indicates that droplets on the order 200-300 microns can be expected, and that higher liquor flow will result in better distribution of liquor in the reactor.


Current Abstracts

Current Abstracts
Author:
Publisher:
Total Pages: 156
Release: 1996
Genre: Biomass energy
ISBN:

Download Current Abstracts Book in PDF, ePub and Kindle


Black Liquor Gasification

Black Liquor Gasification
Author: Pratima Bajpai
Publisher: Elsevier
Total Pages: 103
Release: 2014-03-06
Genre: Technology & Engineering
ISBN: 0081000154

Download Black Liquor Gasification Book in PDF, ePub and Kindle

Black Liquor Gasification (BLG) is a first of its kind to guide chemical engineers, students, operators of paper plants, technocrats, and entrepreneurs on practical guidelines and a holistic techno-enviro-economic perspective applicable to their future or existing projects based on the treatment of black liquor for energy production. BLG describes the gasification process as a more efficient alternative to current processes for the conversion of black liquor biomass into energy. BLG operates largely in sync with other methods to improve pulp-making efficiency. This book explains how BLG offers a way to generate electricity and to reclaim pulping chemicals from black liquor, and why BLG would replace the Tomlinson recovery boiler for the recovery of spent chemicals and energy. Describes the utilization of black liquor as a source of energy Provides a detailed account of black liquor gasification processes for the production of energy and chemicals from black liquor Provides guidelines to chemical engineers for the treatment of black liquor


Tappi Journal

Tappi Journal
Author:
Publisher:
Total Pages: 1258
Release: 1997
Genre: Paper industry
ISBN:

Download Tappi Journal Book in PDF, ePub and Kindle


Gasification of Black Liquor

Gasification of Black Liquor
Author:
Publisher:
Total Pages:
Release: 1987
Genre:
ISBN:

Download Gasification of Black Liquor Book in PDF, ePub and Kindle

A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.


Causticizing for Black Liquor Gasifiers

Causticizing for Black Liquor Gasifiers
Author:
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:

Download Causticizing for Black Liquor Gasifiers Book in PDF, ePub and Kindle

The cost-benefit outlook of black liquor gasification (BLG) could be greatly improved if the smelt causticization step could be achieved in situ during the gasification step. Or, at a minimum, the increase in causticizing load associated with BLG could be mitigated. A number of chemistries have been proven successful during black liquor combustion. In this project, three in situ causticizing processes (titanate, manganate, and borate) were evaluated under conditions suitable for high temperature entrained flow BLG, and low temperature steam reforming of black liquor. The evaluation included both thermodynamic modeling and lab experimentation. Titanate and manganate were tested for complete direct causticizing (to thus eliminate the lime cycle), and borates were evaluated for partial causticizing (to mitigate the load increase associated with BLG). Criteria included high carbonate conversion, corresponding hydroxide recovery upon hydrolysis, non process element (NPE) removal, and economics. Of the six cases (three chemistries at two BLG conditions), only two were found to be industrially viable: titanates for complete causticizing during high temperature BLG, and borates for partial causticizing during high temperature BLG. These two cases were evaluated for integration into a gasification-based recovery island. The Larsen [28] BLG cost-benefit study was used as a reference case for economic forecasting (i.e. a 1500 tpd pulp mill using BLG and upgrading the lime cycle). By comparison, using the titanate direct causticizing process yielded a net present value (NPV) of $25M over the NPV of BLG with conventional lime cycle. Using the existing lime cycle plus borate autocausticizing for extra capacity yielded a NPV of $16M.


Characterization of Black Liquor Sprays for Application to Entrained-flow Processes

Characterization of Black Liquor Sprays for Application to Entrained-flow Processes
Author: Andrew John Mackrory
Publisher:
Total Pages: 178
Release: 2006
Genre: Sulfate waste liquor
ISBN:

Download Characterization of Black Liquor Sprays for Application to Entrained-flow Processes Book in PDF, ePub and Kindle

It is intended that these results contribute to increased understanding of the black liquor atomization process and lead to improved computational modeling of the same.