Modeling Of Real Fuels And Knock Occurrence For An Effective 3d Cfd Virtual Engine Development PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling Of Real Fuels And Knock Occurrence For An Effective 3d Cfd Virtual Engine Development PDF full book. Access full book title Modeling Of Real Fuels And Knock Occurrence For An Effective 3d Cfd Virtual Engine Development.

Modeling of Real Fuels and Knock Occurrence for an Effective 3D-CFD Virtual Engine Development

Modeling of Real Fuels and Knock Occurrence for an Effective 3D-CFD Virtual Engine Development
Author: Francesco Cupo
Publisher: Springer Nature
Total Pages: 119
Release: 2020-09-14
Genre: Technology & Engineering
ISBN: 3658316284

Download Modeling of Real Fuels and Knock Occurrence for an Effective 3D-CFD Virtual Engine Development Book in PDF, ePub and Kindle

To drastically reduce the emission of greenhouse gases, the development of future internal combustion engines will be strictly linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels). This evolution implies an increase in development complexity, which needs the support of engine 3D-CFD simulations. Francesco Cupo presents approaches to accurately describe fuel characteristics and knock occurrence in SI engines, thus improving the current simulation capability in investigating alternative fuels and innovative combustion processes. The developed models are successfully used to investigate the influence of ethanol-based fuels and water injection strategies on knock occurrence and to conduct a virtual fuel design for and engine operating with the innovative SACI combustion strategy.


International Conference on Ignition Systems for Gasoline Engines – International Conference on Knocking in Gasoline Engines

International Conference on Ignition Systems for Gasoline Engines – International Conference on Knocking in Gasoline Engines
Author: Marc Sens
Publisher: expert verlag GmbH
Total Pages: 578
Release: 2022-10-17
Genre: Technology & Engineering
ISBN: 3816985440

Download International Conference on Ignition Systems for Gasoline Engines – International Conference on Knocking in Gasoline Engines Book in PDF, ePub and Kindle

For decades, scientists and engineers have been working to increase the efficiency of internal combustion engines. For spark-ignition engines, two technical questions in particular are always in focus: 1. How can the air/fuel mixture be optimally ignited under all possible conditions? 2. How can undesirable but recurrent early and self-ignitions in the air/fuel mixture be avoided? Against the background of the considerable efficiency increases currently being sought in the context of developments and the introduction of new fuels, such as hydrogen, methanol, ammonia and other hydrogen derivatives as well as biofuels, these questions are more in the focus than ever. In order to provide a perfect exchange platform for the community of combustion process and system developers from research and development, IAV has organized this combined conference, chaired by Marc Sens. The proceedings presented here represent the collection of all the topics presented at the event and are thus intended to serve as an inspiration and pool of ideas for all interested parties.


An Innovative 3D-CFD-Approach towards Virtual Development of Internal Combustion Engines

An Innovative 3D-CFD-Approach towards Virtual Development of Internal Combustion Engines
Author: Marco Chiodi
Publisher: Springer Science & Business Media
Total Pages: 275
Release: 2011-03-07
Genre: Technology & Engineering
ISBN: 3834881317

Download An Innovative 3D-CFD-Approach towards Virtual Development of Internal Combustion Engines Book in PDF, ePub and Kindle

In the engine development process, simulation and predictive programs have continuously gained in reliance. Due to the complexity of future internal combustion engines the application of simulation programs towards a reliable “virtual engine development” is a need that represents one of the greatest challenges. Marco Chiodi presents an innovative 3D-CFD-tool, exclusively dedicated and optimized for the simulation of internal combustion engines. Thanks to improved or newly developed 3D-CFD-models for the description of engine processes, this tool ensures an efficient and reliable calculation also by using coarse 3D-CFD-meshes. Based on this approach the CPU-time can be reduced up to a factor 100 in comparison to traditional 3D-CFD-simulations. In addition an integrated and automatic “evaluation tool” establishes a comprehensive analysis of the relevant engine parameters. Due to the capability of a reliable “virtual development” of full-engines, this fast response 3D-CFD-tool makes a major contribution to the engine development process. Südwestmetall-Förderpreis 2010


Potential of Water Injection for Gasoline Engines by Means of a 3D-CFD Virtual Test Bench

Potential of Water Injection for Gasoline Engines by Means of a 3D-CFD Virtual Test Bench
Author: Antonino Vacca
Publisher: Springer Nature
Total Pages: 202
Release: 2020-12-15
Genre: Technology & Engineering
ISBN: 3658327553

Download Potential of Water Injection for Gasoline Engines by Means of a 3D-CFD Virtual Test Bench Book in PDF, ePub and Kindle

Water injection is one of the most promising technologies to improve the engine combustion efficiency, by mitigating knock occurrences and controlling exhaust gas temperature before turbine. As result, the engine can operate at stoichiometric conditions over the whole engine map, even during the more power-demanding RDE cycles. Antonino Vacca presents a methodology to study and optimize the effect of water injection for gasoline engines by investigating different engine layouts and injection strategies through the set-up of a 3D-CFD virtual test bench. He investigates indirect and direct water injection strategies to increase the engine knock limit and to reduce exhaust gas temperature for several operating points.


Investigation of Innovative Water Injection Strategies for Gasoline Engines by Means of a 3D-CFD Virtual Engine Test Bench

Investigation of Innovative Water Injection Strategies for Gasoline Engines by Means of a 3D-CFD Virtual Engine Test Bench
Author: Edoardo Rossi
Publisher: Springer Nature
Total Pages: 185
Release: 2024
Genre: Automobiles
ISBN: 3658449411

Download Investigation of Innovative Water Injection Strategies for Gasoline Engines by Means of a 3D-CFD Virtual Engine Test Bench Book in PDF, ePub and Kindle

This book focuses on the investigation of innovative engine technologies that can improve the efficiency of internal combustion engines and reduce their environmental impact. In particular, water injection is examined as a means of improving engine behavior. The possible combination of water injection with renewable fuels is also a topic of the book. The results of this experimental and numerical research show positive results that can be used for further research and development of engines. Content 3D-CFD Simulation Environment: the Virtual Engine Test Bench Experimental Spray Analysis and 3D-CFD Injection Model Calibration Applicability of Water Injection in Combination with an eFuel Water-in-Fuel Emulsions at the Virtual Engine Test Bench Target Groups Students and researchers in the field of automotive engineering, esp. engine technology Engineers in the automotive industry About the Author Edoardo Rossi is a project manager in the virtual engine development department at the FKFS, where he did his PhD. He works on innovative solutions for future powertrain technologies for motor vehicles. .


Analysis of Injection Processes in an Innovative 3D-CFD Tool for the Simulation of Internal Combustion Engines

Analysis of Injection Processes in an Innovative 3D-CFD Tool for the Simulation of Internal Combustion Engines
Author: Marlene Wentsch
Publisher: Springer
Total Pages: 155
Release: 2018-05-16
Genre: Technology & Engineering
ISBN: 3658221674

Download Analysis of Injection Processes in an Innovative 3D-CFD Tool for the Simulation of Internal Combustion Engines Book in PDF, ePub and Kindle

Due to the large number of influencing parameters and interactions, the fuel injection and therewith fuel propagation and distribution are among the most complex processes in an internal combustion engine. For this reason, injection is usually the subject to highly detailed numerical modeling, which leads to unacceptably high computing times in the 3D-CFD simulation of a full engine domain. Marlene Wentsch presents a critical analysis, optimization and extension of injection modeling in an innovative, fast response 3D-CFD tool that is exclusively dedicated to the virtual development of internal combustion engines. About the Author Marlene Wentsch works as research associate in the field of 3D-CFD simulations of injection processes at the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart, Germany.


Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines

Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines
Author: Andreas Manz
Publisher: Logos Verlag Berlin GmbH
Total Pages: 263
Release: 2016-08-18
Genre: Science
ISBN: 3832542817

Download Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines Book in PDF, ePub and Kindle

Downsizing of modern gasoline engines with direct injection is a key concept for achieving future CO22 emission targets. However, high power densities and optimum efficiency are limited by an uncontrolled autoignition of the unburned air-fuel mixture, the so-called spark knock phenomena. By a combination of three-dimensional Computational Fluid Dynamics (3D-CFD) and experiments incorporating optical diagnostics, this work presents an integral approach for predicting combustion and autoignition in Spark Ignition (SI) engines. The turbulent premixed combustion and flame front propagation in 3D-CFD is modeled with the G-equation combustion model, i.e. a laminar flamelet approach, in combination with the level set method. Autoignition in the unburned gas zone is modeled with the Shell model based on reduced chemical reactions using optimized reaction rate coefficients for different octane numbers (ON) as well as engine relevant pressures, temperatures and EGR rates. The basic functionality and sensitivities of improved sub-models, e.g. laminar flame speed, are proven in simplified test cases followed by adequate engine test cases. It is shown that the G-equation combustion model performs well even on unstructured grids with polyhedral cells and coarse grid resolution. The validation of the knock model with respect to temporal and spatial knock onset is done with fiber optical spark plug measurements and statistical evaluation of individual knocking cycles with a frequency based pressure analysis. The results show a good correlation with the Shell autoignition relevant species in the simulation. The combined model approach with G-equation and Shell autoignition in an active formulation enables a realistic representation of thin flame fronts and hence the thermodynamic conditions prior to knocking by taking into account the ignition chemistry in unburned gas, temperature fluctuations and self-acceleration effects due to pre-reactions. By the modeling approach and simulation methodology presented in this work the overall predictive capability for the virtual development of future knockproof SI engines is improved.


Engine Modeling and Simulation

Engine Modeling and Simulation
Author: Avinash Kumar Agarwal
Publisher: Springer Nature
Total Pages: 368
Release: 2021-12-16
Genre: Technology & Engineering
ISBN: 9811686181

Download Engine Modeling and Simulation Book in PDF, ePub and Kindle

This book focuses on the simulation and modeling of internal combustion engines. The contents include various aspects of diesel and gasoline engine modeling and simulation such as spray, combustion, ignition, in-cylinder phenomena, emissions, exhaust heat recovery. It also explored engine models and analysis of cylinder bore piston stresses and temperature effects. This book includes recent literature and focuses on current modeling and simulation trends for internal combustion engines. Readers will gain knowledge about engine process simulation and modeling, helpful for the development of efficient and emission-free engines. A few chapters highlight the review of state-of-the-art models for spray, combustion, and emissions, focusing on the theory, models, and their applications from an engine point of view. This volume would be of interest to professionals, post-graduate students involved in alternative fuels, IC engines, engine modeling and simulation, and environmental research.


A Phenomenological Knock Model for the Development of Future Engine Concepts

A Phenomenological Knock Model for the Development of Future Engine Concepts
Author: Alexander Fandakov
Publisher: Springer Vieweg
Total Pages: 233
Release: 2019-01-08
Genre: Technology & Engineering
ISBN: 9783658248741

Download A Phenomenological Knock Model for the Development of Future Engine Concepts Book in PDF, ePub and Kindle

The majority of 0D/1D knock models available today are known for their poor accuracy and the great effort needed for their calibration. Alexander Fandakov presents a novel, extensively validated phenomenological knock model for the development of future engine concepts within a 0D/1D simulation environment that has one engine-specific calibration parameter. Benchmarks against the models commonly used in the automotive industry reveal the huge gain in knock boundary prediction accuracy achieved with the approach proposed in this work. Thus, the new knock model contributes substantially to the efficient design of spark ignition engines employing technologies such as full-load exhaust gas recirculation, water injection, variable compression ratio or lean combustion. About the Author Alexander Fandakov holds a PhD in automotive powertrain engineering from the Institute of Internal Combustion Engines and Automotive Engineering (IVK) at the University of Stuttgart, Germany. Currently, he is working as an advanced powertrain development engineer in the automotive industry.