Modeling And Electrothermal Simulation Of Sic Power Devices Using Silvacoc Atlas PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling And Electrothermal Simulation Of Sic Power Devices Using Silvacoc Atlas PDF full book. Access full book title Modeling And Electrothermal Simulation Of Sic Power Devices Using Silvacoc Atlas.

Modeling And Electrothermal Simulation Of Sic Power Devices: Using Silvaco© Atlas

Modeling And Electrothermal Simulation Of Sic Power Devices: Using Silvaco© Atlas
Author: Pushpakaran Bejoy N
Publisher: World Scientific
Total Pages: 464
Release: 2019-03-25
Genre: Technology & Engineering
ISBN: 9813237848

Download Modeling And Electrothermal Simulation Of Sic Power Devices: Using Silvaco© Atlas Book in PDF, ePub and Kindle

The primary goal of this book is to provide a sound understanding of wide bandgap Silicon Carbide (SiC) power semiconductor device simulation using Silvaco© ATLAS Technology Computer Aided Design (TCAD) software. Physics-based TCAD modeling of SiC power devices can be extremely challenging due to the wide bandgap of the semiconductor material. The material presented in this book aims to shorten the learning curve required to start successful SiC device simulation by providing a detailed explanation of simulation code and the impact of various modeling and simulation parameters on the simulation results. Non-isothermal simulation to predict heat dissipation and lattice temperature rise in a SiC device structure under switching condition has been explained in detail. Key pointers including runtime error messages, code debugging, implications of using certain models and parameter values, and other factors beneficial to device simulation are provided based on the authors' experience while simulating SiC device structures. This book is useful for students, researchers, and semiconductor professionals working in the area of SiC semiconductor technology. Readers will be provided with the source code of several fully functional simulation programs that illustrate the use of Silvaco© ATLAS to simulate SiC power device structure, as well as supplementary material for download.


Vertical GaN and SiC Power Devices

Vertical GaN and SiC Power Devices
Author: Kazuhiro Mochizuki
Publisher: Artech House
Total Pages: 308
Release: 2018-04-30
Genre: Technology & Engineering
ISBN: 1630814296

Download Vertical GaN and SiC Power Devices Book in PDF, ePub and Kindle

This unique new resource provides a comparative introduction to vertical Gallium Nitride (GaN) and Silicon Carbide (SiC) power devices using real commercial device data, computer, and physical models. This book uses commercial examples from recent years and presents the design features of various GaN and SiC power components and devices. Vertical verses lateral power semiconductor devices are explored, including those based on wide bandgap materials. The abstract concepts of solid state physics as they relate to solid state devices are explained with particular emphasis on power solid state devices. Details about the effects of photon recycling are presented, including an explanation of the phenomenon of the family tree of photon-recycling. This book offers in-depth coverage of bulk crystal growth of GaN, including hydride vapor-phase epitaxial (HVPE) growth, high-pressure nitrogen solution growth, sodium-flux growth, ammonothermal growth, and sublimation growth of SiC. The fabrication process, including ion implantation, diffusion, oxidation, metallization, and passivation is explained. The book provides details about metal-semiconductor contact, unipolar power diodes, and metal-insulator-semiconductor (MIS) capacitors. Bipolar power diodes, power switching devices, and edge terminations are also covered in this resource.


Transient Electro-Thermal Modeling on Power Semiconductor Devices

Transient Electro-Thermal Modeling on Power Semiconductor Devices
Author: Tanya Kirilova Gachovska
Publisher: Springer Nature
Total Pages: 68
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031025067

Download Transient Electro-Thermal Modeling on Power Semiconductor Devices Book in PDF, ePub and Kindle

This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusion equation in the lightly doped drift region of the devices. In addition to the external electrical characteristics, internal physical and electrical information, such as junction voltages and carrier distribution in different regions of the device, can be obtained using the models. The instantaneous dissipated power, calculated using the electrical device models, serves as input to the thermal model (RC network with constant and nonconstant thermal resistance and thermal heat capacity, or Fourier thermal model) of the entire module or package, which computes the junction temperature of the device. Once an updated junction temperature is calculated, the temperature-dependent semiconductor material parameters are re-calculated and used with the device electrical model in the next time-step of the simulation. The physics-based electro-thermal models can be used for optimizing device and package design and also for validating extracted parameters of the devices. The thermal model can be used alone for monitoring the junction temperature of a power semiconductor device, and the resulting simulation results used as an indicator of the health and reliability of the semiconductor power device.


HEMT Technology and Applications

HEMT Technology and Applications
Author: Trupti Ranjan Lenka
Publisher: Springer Nature
Total Pages: 246
Release: 2022-06-23
Genre: Technology & Engineering
ISBN: 9811921652

Download HEMT Technology and Applications Book in PDF, ePub and Kindle

This book covers two broad domains: state-of-the-art research in GaN HEMT and Ga2O3 HEMT. Each technology covers materials system, band engineering, modeling and simulations, fabrication techniques, and emerging applications. The book presents basic operation principles of HEMT, types of HEMT structures, and semiconductor device physics to understand the device behavior. The book presents numerical modeling of the device and TCAD simulations for high-frequency and high-power applications. The chapters include device characteristics of HEMT including 2DEG density, Id-Vgs, Id-Vds, transconductance, linearity, and C-V. The book emphasizes the state-of-the-art fabrication techniques of HEMT and circuit design for various applications in low noise amplifier, oscillator, power electronics, and biosensor applications. The book focuses on HEMT applications to meet the ever-increasing demands of the industry, innovation in terms of materials, design, modeling, simulation, processes, and circuits. The book will be primarily helpful to undergraduate/postgraduate, researchers, and practitioners in their research.


Transient Electro-Thermal Modeling of Bipolar Power Semiconductor Devices

Transient Electro-Thermal Modeling of Bipolar Power Semiconductor Devices
Author: Tanya Kirilova Gachovska
Publisher: Morgan & Claypool Publishers
Total Pages: 85
Release: 2013-11-01
Genre: Technology & Engineering
ISBN: 1627051902

Download Transient Electro-Thermal Modeling of Bipolar Power Semiconductor Devices Book in PDF, ePub and Kindle

This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusion equation in the lightly doped drift region of the devices. In addition to the external electrical characteristics, internal physical and electrical information, such as junction voltages and carrier distribution in different regions of the device, can be obtained using the models. The instantaneous dissipated power, calculated using the electrical device models, serves as input to the thermal model (RC network with constant and nonconstant thermal resistance and thermal heat capacity, or Fourier thermal model) of the entire module or package, which computes the junction temperature of the device. Once an updated junction temperature is calculated, the temperature-dependent semiconductor material parameters are re-calculated and used with the device electrical model in the next time-step of the simulation. The physics-based electro-thermal models can be used for optimizing device and package design and also for validating extracted parameters of the devices. The thermal model can be used alone for monitoring the junction temperature of a power semiconductor device, and the resulting simulation results used as an indicator of the health and reliability of the semiconductor power device.


SiC Power Module Design

SiC Power Module Design
Author: Alberto Castellazzi
Publisher: IET
Total Pages: 359
Release: 2021-12-09
Genre: Technology & Engineering
ISBN: 1785619071

Download SiC Power Module Design Book in PDF, ePub and Kindle

Wide Bandgap semiconductor devices offer higher efficiency, smaller size, less weight, and longer lifetime, with applications in power grid electronics and electromobility. This book describes the state of advanced packaging solutions for novel wide-band-gap semiconductors, specifically silicon carbide (SiC) MOSFETs and diodes.


Integrated Power Devices and TCAD Simulation

Integrated Power Devices and TCAD Simulation
Author: Yue Fu
Publisher: CRC Press
Total Pages: 364
Release: 2017-12-19
Genre: Technology & Engineering
ISBN: 1466583835

Download Integrated Power Devices and TCAD Simulation Book in PDF, ePub and Kindle

From power electronics to power integrated circuits (PICs), smart power technologies, devices, and beyond, Integrated Power Devices and TCAD Simulation provides a complete picture of the power management and semiconductor industry. An essential reference for power device engineering students and professionals, the book not only describes the physics inside integrated power semiconductor devices such lateral double-diffused metal oxide semiconductor field-effect transistors (LDMOSFETs), lateral insulated-gate bipolar transistors (LIGBTs), and super junction LDMOSFETs but also delivers a simple introduction to power management systems. Instead of abstract theoretical treatments and daunting equations, the text uses technology computer-aided design (TCAD) simulation examples to explain the design of integrated power semiconductor devices. It also explores next generation power devices such as gallium nitride power high electron mobility transistors (GaN power HEMTs). Including a virtual process flow for smart PIC technology as well as a hard-to-find technology development organization chart, Integrated Power Devices and TCAD Simulation gives students and junior engineers a head start in the field of power semiconductor devices while helping to fill the gap between power device engineering and power management systems.


Latest Advances in Electrothermal Models

Latest Advances in Electrothermal Models
Author: Krzysztof Górecki
Publisher:
Total Pages: 140
Release: 2021
Genre:
ISBN: 9783036503356

Download Latest Advances in Electrothermal Models Book in PDF, ePub and Kindle

This book is devoted to the latest advances in the area of electrothermal modelling of electronic components and networks. It contains eight sections by different teams of authors. These sections contain the results of: (a) electro-thermal simulations of SiC power MOSFETs using a SPICE-like simulation program; (b) modelling thermal properties of inductors taking into account the influence of the core volume on the efficiency of heat removal; (c) investigations into the problem of inserting a temperature sensor in the neighbourhood of a chip to monitor its junction temperature; (d) computations of the internal temperature of power LEDs situated in modules containing multiple-power LEDs, taking into account both self-heating in each power LED and mutual thermal couplings between each diode; (e) analyses of DC-DC converters using the electrothermal averaged model of the diode-transistor switch, including an IGBT and a rapid-switching diode; (f) electrothermal modelling of SiC power BJTs; (g) analysis of the efficiency of selected algorithms used for solving heat transfer problems at nanoscale; (h) analysis related to thermal simulation of the test structure dedicated to heat-diffusion investigation at the nanoscale.


Technology Computer Aided Design

Technology Computer Aided Design
Author: Chandan Kumar Sarkar
Publisher: CRC Press
Total Pages: 462
Release: 2018-09-03
Genre: Technology & Engineering
ISBN: 1466512660

Download Technology Computer Aided Design Book in PDF, ePub and Kindle

Responding to recent developments and a growing VLSI circuit manufacturing market, Technology Computer Aided Design: Simulation for VLSI MOSFET examines advanced MOSFET processes and devices through TCAD numerical simulations. The book provides a balanced summary of TCAD and MOSFET basic concepts, equations, physics, and new technologies related to TCAD and MOSFET. A firm grasp of these concepts allows for the design of better models, thus streamlining the design process, saving time and money. This book places emphasis on the importance of modeling and simulations of VLSI MOS transistors and TCAD software. Providing background concepts involved in the TCAD simulation of MOSFET devices, it presents concepts in a simplified manner, frequently using comparisons to everyday-life experiences. The book then explains concepts in depth, with required mathematics and program code. This book also details the classical semiconductor physics for understanding the principle of operations for VLSI MOS transistors, illustrates recent developments in the area of MOSFET and other electronic devices, and analyzes the evolution of the role of modeling and simulation of MOSFET. It also provides exposure to the two most commercially popular TCAD simulation tools Silvaco and Sentaurus. • Emphasizes the need for TCAD simulation to be included within VLSI design flow for nano-scale integrated circuits • Introduces the advantages of TCAD simulations for device and process technology characterization • Presents the fundamental physics and mathematics incorporated in the TCAD tools • Includes popular commercial TCAD simulation tools (Silvaco and Sentaurus) • Provides characterization of performances of VLSI MOSFETs through TCAD tools • Offers familiarization to compact modeling for VLSI circuit simulation R&D cost and time for electronic product development is drastically reduced by taking advantage of TCAD tools, making it indispensable for modern VLSI device technologies. They provide a means to characterize the MOS transistors and improve the VLSI circuit simulation procedure. The comprehensive information and systematic approach to design, characterization, fabrication, and computation of VLSI MOS transistor through TCAD tools presented in this book provides a thorough foundation for the development of models that simplify the design verification process and make it cost effective.