Modeling And Control Of Thermoacoustics In A One Dimensional Combustor PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling And Control Of Thermoacoustics In A One Dimensional Combustor PDF full book. Access full book title Modeling And Control Of Thermoacoustics In A One Dimensional Combustor.

Modeling and Control of Thermoacoustics in a One-dimensional Combustor

Modeling and Control of Thermoacoustics in a One-dimensional Combustor
Author: Xiaoling Chen
Publisher:
Total Pages:
Release: 2021
Genre:
ISBN:

Download Modeling and Control of Thermoacoustics in a One-dimensional Combustor Book in PDF, ePub and Kindle

This dissertation examines the model-based optimization of sensor placement, estimation, and control for the active suppression of thermoacoustic instabilities in a one-dimensional combustor. This research is motivated by the increasing use of lean premixed combustion for emission reduction in gas turbine combustors. Thermoacoustic instability is a potentially damaging side effect of lean premixed combustion, caused by the unstable coupling between acoustics and unsteady heat release. There is extensive existing literature on the suppression of this instability, using both passive means such as Helmholtz resonators and active stability control. Much of the work on active combustion stability control relies on the injection of an additional acoustic excitation or fuel supply to break the above undesirable unstable coupling, thereby suppressing instability. Researchers have shown the promise of active combustion instability control both in simulations and laboratory experiments, for both single and multiple modes of instability. Active combustion stability control remains relatively scarce in industrial practice, despite the rich existing literature indicating its potential for success. Several important research questions need to be answered in order to help bridge this gap. First, while much of the recent research on active combustion stability control assumes one-dimensional combustion dynamics, an open question remains regarding the importance of other dynamic effects in the combustor, such as the dynamic interactions between multiple flames. Second, the degree to which the placement of sensors and actuators in a combustor affects the accuracy with which combustion instability dynamics can be estimated remains relatively unexplored in the literature. Third, the suitability of traditional linear model-based estimation and control techniques for stabilizing combustion instabilities with nonlinear heat release dynamics also remains relatively unexplored in the literature. The overarching goal of this dissertation is to address the above gaps using a combination of optimal sensor placement, optimal estimation, and optimal control. Towards this goal, the dissertation makes six specific contributions to the literature: 1. First, the author performs an experimental comparison between thermoacoustic instabilities in single- versus multi-nozzle combustion systems (Chapter 2). This study shows that the dynamic interactions between multiple flames in a multi-nozzle combustor have a non-trivial impact on thermoacoustic instability, especially the time scales of the transient instabilities. This helps characterize and understand the constraints on the practical applicability of one-dimensional combustion instability models for multi-nozzle systems, including the models used in the remainder of this dissertation. 2. Second, the author optimizes the design of a laboratory characterization experiment for a one-dimensional combustor (Chapter 3). This optimization utilizes Fisher information analysis for optimal combustion instability characterization, for the first time. 3. Third, the dissertation shows, using a mix of simulation-based and experimental studies, that the above use of optimal experimental design improves combustion instability parameterization accuracy (Chapter 4). Moreover, by furnishing more accurate combustion instability models, one is able to achieve higher levels of confidence in the robustness of the resulting combustion stability controllers. 4. Fourth, the dissertation presents a novel algorithm that makes it possible to estimate combustion heat release rates from multi-microphone measurements of the resulting acoustic signatures, in a manner that does not require the modeling of heat release dynamics (Chapter 5). This is important because it simplifies the online estimation of heat release dynamics, compared to model-based estimation methods requiring a heat release model. 5. Fifth, the dissertation studies the impact of sensor placement on the observability and LQG control of combustion instabilities governed by a linear $n-\tau$ heat release model (Chapter 6). This work highlights the importance of placing acoustic sensors at specific locations like the pressure mode anti-node points, including the acoustically closed combustor boundary. 6. Finally, the author develops a computational framework for the co-simulation of linear combustor acoustics, model-based combustion stability control, and nonlinear heat release dynamics governed by a level-set solver (Chapter 7). To the best of the author's knowledge, this is the first framework in the literature enabling the simulation-based study of the efficacy of linear control for combustion instabilities characterized by nonlinear heat release dynamics. In making the above contributions to the literature, this dissertation builds on the well-established idea that linear model-based estimation and control can be effective in suppressing combustion instability. The novelty of the dissertation lies in: 1. Pushing the above idea further by examining the degree to which its efficacy can be enhanced further through the use of information theory to optimize sensor placement and experimental design for estimation/control applications. 2. Building a framework that makes it possible to study the efficacy of model-based linear estimation/control in the context of thermo-acoustic instabilities driven by nonlinear heat release dynamics.


Thermoacoustic Combustion Instability Control

Thermoacoustic Combustion Instability Control
Author: Dan Zhao
Publisher: Academic Press
Total Pages: 1145
Release: 2023-02-13
Genre: Technology & Engineering
ISBN: 0323899188

Download Thermoacoustic Combustion Instability Control Book in PDF, ePub and Kindle

Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes provides a unique opportunity for researchers, students and engineers to access recent developments from technical, theoretical and engineering perspectives. The book is a compendium of the most recent advances in theoretical and computational modeling and the thermoacoustic instability phenomena associated with multi-dimensional computing methods and recent developments in signal-processing techniques. These include, but are not restricted to a real-time observer, proper orthogonal decomposition (POD), dynamic mode decomposition, Galerkin expansion, empirical mode decomposition, the Lattice Boltzmann method, and associated numerical and analytical approaches. The fundamental physics of thermoacoustic instability occurs in both macro- and micro-scale combustors. Practical methods for alleviating common problems are presented in the book with an analytical approach to arm readers with the tools they need to apply in their own industrial or research setting. Readers will benefit from practicing the worked examples and the training provided on computer coding for combustion technology to achieve useful results and simulations that advance their knowledge and research. Focuses on applications of theoretical and numerical modes with computer codes relevant to combustion technology Includes the most recent modeling and analytical developments motivated by empirical experimental observations in a highly visual way Provides self-contained chapters that include a comprehensive, introductory section that ensures any readers new to this topic are equipped with required technical terms


A Sectored-One-Dimensional Model for Simulating Combustion Instabilities in Premix Combustors

A Sectored-One-Dimensional Model for Simulating Combustion Instabilities in Premix Combustors
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 32
Release: 2018-06-15
Genre:
ISBN: 9781721198214

Download A Sectored-One-Dimensional Model for Simulating Combustion Instabilities in Premix Combustors Book in PDF, ePub and Kindle

A one-dimensional, CFD based combustor simulation has been developed that exhibits self-excited, thermoacoustic oscillations in premixed combustor geometries that typically have large, abrupt changes in cross sectional area. The combustor geometry is approximated by dividing it into a finite number of one-dimensional sectors. Within each sector, the equations of motion are integrated numerically, along with a species transport and a reaction equation. Across the sectors, mass and energy are conserved, and momentum loss is prescribed using appropriately compatible boundary conditions that account for the area change. The resulting simulation and associated boundary conditions essentially represent a one-dimensional, multi-block technique. Details of the simulation code are presented herein. Results are then shown comparing experimentally observed and simulated operation of a particular combustor rig that exhibited different instabilities at different operating points. It will be shown that the simulation closely matched the rig data in oscillation amplitudes, frequencies, and operating points at which the instabilities occurred. Finally, advantages and limitations of the simulation technique are discussed. Paxson, Daniel E. Glenn Research Center NASA/TM-1999-209771, NAS 1.15:209771, AIAA Paper 2000-0313, E-12051


Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems

Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems
Author: Xiaofeng Sun
Publisher: Elsevier
Total Pages: 556
Release: 2020-10-14
Genre: Technology & Engineering
ISBN: 012408074X

Download Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems Book in PDF, ePub and Kindle

Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems from the Shanghai Jiao Tong University Press Aerospace series, is the go-to reference on the topic, providing a modern take on the fundamental theory and applications relating to prediction and control of all major noise sources in aeropropulsion systems. This important reference compiles the latest knowledge and research advances, considering both the physics of aerodynamic noise generation in aero-engines and related numerical prediction techniques. Additionally, it introduces new vortex sound interaction models, a transfer element method, and a combustion instability model developed by the authors. Focusing on propulsion systems from inlet to exit, including combustion noise, this new resource will aid graduate students, researchers, and R&D engineers in solving the aircraft noise problems that currently challenge the industry. Updates the knowledge-base on the sound source generated by aeropropulsion systems, from inlet to exit, including combustion noise Covers new aerodynamic noise control technology aimed at the low-noise design of next generation aero-engines, including topics such as aerodynamic noise and aero-engine noise control Includes new, cutting-edge models and methods developed by an author team led by the editor-in-chief of the Chinese Journal of Aeronautics and Astronautics Considers both the physics of aerodynamic noise generation in aero-engines and related numerical prediction techniques


Combustion Instabilities in Gas Turbine Engines

Combustion Instabilities in Gas Turbine Engines
Author: Timothy C. Lieuwen
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
Total Pages: 688
Release: 2005
Genre: Science
ISBN:

Download Combustion Instabilities in Gas Turbine Engines Book in PDF, ePub and Kindle

This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.


Simulation and Control of Instationary Reactive Flows in Matrix Burner for Small Power Gas Turbine Applications

Simulation and Control of Instationary Reactive Flows in Matrix Burner for Small Power Gas Turbine Applications
Author: James Fayiah Willie
Publisher: Cuvillier Verlag
Total Pages: 186
Release: 2012-02-02
Genre: Technology & Engineering
ISBN: 3736940017

Download Simulation and Control of Instationary Reactive Flows in Matrix Burner for Small Power Gas Turbine Applications Book in PDF, ePub and Kindle

The main objective of this thesis is to analyze combustion instabilities in a matrix burner. The various tools that exist for analyzing thermoacoustic instabilities are applied to the matrix burner with multiple flames. The principal goals are to determine the primary causes of combustion instabilities in the burner and to explore ways of controlling such instabilities in order to prevent damage to the burner. To achieve these goals, the stability map of the burner obtained from measurements is analyzed. This is followed by the analysis of the aerodynamics of the cold flow using CFD. Results obtained from CFD are validated with PIV and LDA results from measurements. Critical are the centerline axial velocity inside the combustion chamber and the recirculation zones on the walls of the combustion chamber and those between the various slots of the matrix burner. Cold flow simulations are followed by reactive flow simulations for both gaseous and liquid fuels. A detailed atomization model is developed for the liquid fuel case from experimental data. Two combustion models, namely, the combined finite rate/eddy dissipation model and the finite rate chemistry model are compared in the CFD simulations of combustion instabilities and validation with measurements are done. The latter is chosen over the former because it accounts for chemistry and it is not numerically dissipative. Two CFD softwares, Fluent and CFX are also compared to determine which is better at capturing acoustics. System identification using CFD is used to determine the flame transfer function and the acoustic transfer matrix. This is followed by the use of acoustic forcing and fuel modulation on the primary and pilot in order to limit the amplitude of the instabilities inside the matrix burner combustor. The 1D acoustic network is used to determine the longitudinal eigenmodes of the matrix burner. This is followed by the use of 3D finite element method (FEM) and fluid-structure interaction (FSI) to determine whether a coupling exist between the fluid and structure of the matrix burner combustor and vice versa. Finally, Full harmonic analysis is performed for the rectangular combustor and the results obtained are validated with analytical results. This is followed by the 3D structure modal analysis of the full matrix burner test rig.


1D and Multi-D Modeling Techniques for IC Engine Simulation

1D and Multi-D Modeling Techniques for IC Engine Simulation
Author: Angelo Onorati
Publisher: SAE International
Total Pages: 552
Release: 2020-04-06
Genre: Technology & Engineering
ISBN: 0768099528

Download 1D and Multi-D Modeling Techniques for IC Engine Simulation Book in PDF, ePub and Kindle

1D and Multi-D Modeling Techniques for IC Engine Simulation provides a description of the most significant and recent achievements in the field of 1D engine simulation models and coupled 1D-3D modeling techniques, including 0D combustion models, quasi-3D methods and some 3D model applications.