Modeling And Control Of Grids Of Near Future With Converters And Synchronous Machines PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling And Control Of Grids Of Near Future With Converters And Synchronous Machines PDF full book. Access full book title Modeling And Control Of Grids Of Near Future With Converters And Synchronous Machines.

Modeling and Control of Grids of Near Future with Converters and Synchronous Machines

Modeling and Control of Grids of Near Future with Converters and Synchronous Machines
Author: Sayan Samanta
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN:

Download Modeling and Control of Grids of Near Future with Converters and Synchronous Machines Book in PDF, ePub and Kindle

The future power grid is gradually transitioning towards a greater utilization of inverter-based resources (IBRs) to integrate renewable energy in generation portfolio. The existing synchronous generator (SG)-dominated power system is evolving into a grid, where both SGs and IBRs coexist. Since SGs are sources of mechanical inertia, their gradual replacement is resulting in a low-inertia power grid. One of the main challenges faced by such systems incorporating SGs and IBRs is the primary frequency response following a loss of generation or sudden large change in loads, which may lead to underfrequency load shedding (UFLS). Broadly, bulk power systems connected to SGs and a significant number of IBRs are the subject matter of this dissertation, with a focus on modeling, stability analysis, and control for providing frequency support from the perspective of primary frequency response. Although IBRs can be of different types depending on the control strategy, grid-forming converter (GFC) technology with a direct control over its frequency is much less understood, and is a major focus of research in this dissertation. These GFC-interfaced renewable resources in future low-inertia grids are expected to provide primary frequency support so that underfrequency load shedding is averted. The GFCs can be divided into two classes based on the control strategy: (a) class-A: droop control, dispatchable virtual oscillator control, and virtual synchronous machine, and (b) class-B: matching control. It is observed that while providing frequency support, the class-A GFCs may undergo dc-voltage collapse under current limitations during underfrequency events. On the contrary, class-B GFCs are more robust in this context. In the first part of the dissertation, we perform a stability analysis of both classes of GFCs following such events. To that end, first, the averaged phasor models of these GFC classes are developed, which can be seamlessly integrated with traditional positive sequence fundamental frequency planning models of grids. Building on this, simplified averaged models are derived to study the stability of the dc-link voltage of the GFCs under current limitations in a generic multimachine system. Using these models, the sufficiency conditions for stability for both the classes and that of instability for class-A GFCs are established. As a logical next step, a decentralized supplementary control for the droop-based class-A GFC is proposed to solve the dc-link voltage instability issue under the current limitations. This sliding mode control-based approach also aims to provide primary frequency support after the contingency. The proposed method leads to quantifiable frequency support irrespective of frequency deviation, which in turn can incentivize the plants through market participation. This approach requires the communication of frequency measurements of GFCs from adjacent buses. The proposed controller guarantees asymptotic stability of power grids with generic configurations that include multiple SGs and GFCs under dc power flow approximation and a mild assumption on the center-of-inertia based frequency dynamics model. The sliding mode controller design is challenging for a grid with multiple GFCs, as the sliding surface for each GFC requires iterative experiments for refinement. Moreover, for sliding mode control we could not establish the stability guarantee in the reduced-order system in presence of the constraints on the control input. To solve this problem, a nonlinear model predictive control (NMPC) strategy is proposed for frequency support from the GFCs, which ensures dc-link voltage stability. The NMPC approach considers a multitude of constraints including those on control input and tracks the dc-link voltage reference to indirectly regulates active power output. The controller also ensures finite-time practical stability of the close-loop system. The above-mentioned analyses and control strategies are primarily evaluated in positive sequence fundamental frequency phasor models of multiple modified IEEE benchmark systems with IBRs. Finally, the detailed electromagnetic transient (EMT) models of the IBRs are used to closely replicate the behavior of the GFCs in a real-world power grid. An EMT-TS co-simulation platform is developed for integrating the EMT models of IBRs to the phasor-based planning models of bulk power systems. This platform is used to integrate the planning model of the Western Electricity Coordinating Council (WECC) grid with an EMT-based GFC model. The proposed sliding mode control is validated in this co-simulation model to ensure the dc-link voltage stability of the GFC and provide frequency support following a contingency.


Modeling techniques and control strategies for inverter dominated microgrids

Modeling techniques and control strategies for inverter dominated microgrids
Author: Gkountaras, Aris
Publisher: Universitätsverlag der TU Berlin
Total Pages: 172
Release: 2017-02-15
Genre: Technology & Engineering
ISBN: 3798328722

Download Modeling techniques and control strategies for inverter dominated microgrids Book in PDF, ePub and Kindle

The character of modern power systems is changing rapidly and inverters are taking over a considerable part of the energy generation. A future purely inverter-based grid could be a viable solution, if its technical feasibility can be first validated. The focus of this work lies on inverter dominated microgrids, which are also mentioned as 'hybrid' in several instances throughout the thesis. Hybrid, as far as the energy input of each generator is concerned. Conventional fossil fuel based generators are connected in parallel to renewable energy sources as well as battery systems. The main contributions of this work comprise of: The analysis of detailed models and control structures of grid inverters, synchronous generators and battery packs and the utilization of these models to formulate control strategies for distributed generators. The developed strategies accomplish objectives in a wide time scale, from maintaining stability during faults and synchronization transients as well as optimizing load flow through communication-free distributed control. Die Struktur der modernen Energieversorgung hat sich in den letzten Jahrzehnten massiv geändert. Dezentrale Generatoren, die auf Wechselrichtern basieren, übernehmen einen großen Teil der Energieerzeugung. Ein ausschließlich wechselrichterbasiertes Netz wäre ein realistischer Ansatz, wenn seine technische Machbarkeit verifiziert werden könnte. Die wichtigste Beiträge dieser Arbeit sind: Die Analyse von Modellen und Regelstrukturen von Netzwechselrichtern, Synchrongeneratoren und Batterieanlagen. Die entwickelten Modelle werden verwendet, um Regelstrategien für dezentrale Generatoren in Mittelspannungsinselnetzen zu formulieren. Die erste Strategie ist eine Synchronisationsmethode für netzbildende Wechselrichter. Zweitens wird die Leistungsaufteilung in Mittelspannungsinselnetzen mittels Droop Regelung analysiert. Weiterhin erfolgt die Untersuchung der transienten Lastaufteilung zwischen netzbildenden Einheiten mit unterschiedlichen Zeitkonstanten. Beim Betrieb mehrerer paralleler Wechselrichter wird der Einfluss der Netzimpedanz auf die transiente Lastaufteilung analysiert. Die dritte entworfene Regelstrategie umfasst die Integration der Sekundärregelung in die Primärregelung. Der Ladezustand von Batterien wird mit der Lastaufteilung gekoppelt, um die Autonomie des Netzes zu stärken. Abschließend wird eine Kurzschlussstrategie für netzbildende und netzspeisende Wechselrichter entwickelt. Ziel der Strategie ist die Maximierung des Kurzschlussstromes. Als zusätzliche Randbedingung soll keine Kommunikation zwischen Generatoren stattfinden.


Grid Connected Converters

Grid Connected Converters
Author: Hassan Bevrani
Publisher: Elsevier
Total Pages: 312
Release: 2022-08-11
Genre: Technology & Engineering
ISBN: 0323999549

Download Grid Connected Converters Book in PDF, ePub and Kindle

Grid Connected Converters: Modeling, Stability and Control discusses the foundations and core applications of this diverse field, from structure, modeling and dynamic equivalencing through power and microgrids dynamics and stability, before moving on to controller synthesis methodologies for a powerful range of applications. The work opens with physical constraints and engineering aspects of advanced control schemes. Robust and adaptive control strategies are evaluated using real-time simulation and experimental studies. Once foundations have been established, the work goes on to address new technical challenges such as virtual synchronous generators and synergic inertia emulation in response to low inertia challenges in modern power grids.The book also addresses advanced systematic control synthesis methodologies to enhance system stability and dynamic performance in the presence of uncertainties, practical constraints and cyberattacks. Addresses new approaches for modeling, stability analysis and control design of GCCs Proposes robust and flexible GCC control frameworks for supporting grid regulation Emphasizes the application of GCCs in inertia emulation, oscillation damping control, and dynamic shaping Addresses systematic control synthesis methodologies for system security and dynamic performance


Grid-Forming Converters

Grid-Forming Converters
Author: Jingyang Fang
Publisher: Academic Press
Total Pages: 0
Release: 2024-11-01
Genre: Technology & Engineering
ISBN: 9780443237355

Download Grid-Forming Converters Book in PDF, ePub and Kindle

Grid-Forming Converters: Principles, Control, and Applications in Modern Power Systems is a pioneering guidebook to this state-of-the-art technology and its potential in enabling more-electronics grids and deep renewable integration for the energy systems of the future. Beginning with a clear explanation of the challenges presented for the standard synchronous generator or grid-tied converters by fossil-fuel phase-out and renewable integration, this book goes on to explain the fundamental concepts of grid-forming converters. Having established a solid foundational understanding the reader will learn practical techniques for implementation including design, control, analysis, and optimization. Finally, readers tackle case studies and example applications from energy storage to electric vehicles. From several of the foremost experts and educators in energy systems and power electronics, Grid-Forming Converters is an essential tool for students, professors and engineers working to make renewable-based grids a reality.


Converter-Based Dynamics and Control of Modern Power Systems

Converter-Based Dynamics and Control of Modern Power Systems
Author: Antonello Monti
Publisher: Academic Press
Total Pages: 376
Release: 2020-10-22
Genre: Technology & Engineering
ISBN: 0128184922

Download Converter-Based Dynamics and Control of Modern Power Systems Book in PDF, ePub and Kindle

Converter-Based Dynamics and Control of Modern Power Systems addresses the ongoing changes and challenges in rotating masses of synchronous generators, which are transforming dynamics of the electrical system. These changes make it more important to consider and understand the role of power electronic systems and their characteristics in shaping the subtleties of the grid and this book fills that knowledge gap. Balancing theory, discussion, diagrams, mathematics, and data, this reference provides the information needed to acquire a thorough overview of resilience issues and frequency definition and estimation in modern power systems. This book offers an overview of classical power system dynamics and identifies ways of establishing future challenges and how they can be considered at a global level to overcome potential problems. The book is designed to prepare future engineers for operating a system that will be driven by electronics and less by electromechanical systems. Includes theory on the emerging topic of electrical grids based on power electronics Creates a good bridge between traditional theory and modern theory to support researchers and engineers Links the two fields of power systems and power electronics in electrical engineering


Fuelling the Future

Fuelling the Future
Author: A. Mendez-Vilas
Publisher: Universal-Publishers
Total Pages: 615
Release: 2012-12-01
Genre: Science
ISBN: 1612335586

Download Fuelling the Future Book in PDF, ePub and Kindle

"This book contains a selection of papers presented at The Energy & Materials Research Conference (EMR2012), which was held in Torremolinos, Málaga (Spain), during June 20th-22nd 2012."--p. ix.


Doubly Fed Induction Machine

Doubly Fed Induction Machine
Author: Gonzalo Abad
Publisher: John Wiley & Sons
Total Pages: 578
Release: 2011-09-28
Genre: Technology & Engineering
ISBN: 1118104951

Download Doubly Fed Induction Machine Book in PDF, ePub and Kindle

This book will be focused on the modeling and control of the DFIM based wind turbines. In the first part of the book, the mathematical description of different basic dynamic models of the DFIM will be carried out. It will be accompanied by a detailed steady-state analysis of the machine. After that, a more sophisticated model of the machine that considers grid disturbances, such as voltage dips and unbalances will be also studied. The second part of the book surveys the most relevant control strategies used for the DFIM when it operates at the wind energy generation application. The control techniques studied, range from standard solutions used by wind turbine manufacturers, to the last developments oriented to improve the behavior of high power wind turbines, as well as control and hardware based solutions to address different faulty scenarios of the grid. In addition, the standalone DFIM generation system will be also analyzed.


Modular Interactive Modeling for Control and Simulation of Electric Power Systems

Modular Interactive Modeling for Control and Simulation of Electric Power Systems
Author: Sarah Flanagan
Publisher:
Total Pages: 69
Release: 2021
Genre:
ISBN:

Download Modular Interactive Modeling for Control and Simulation of Electric Power Systems Book in PDF, ePub and Kindle

Power systems must ensure reliable service during normal operation and unexpected disturbances. They also should enable decarbonization goals by supporting utilization of new renewable energy resources that are being added to the system. Conventional control used in power plants and generators is becoming insufficient because previously true assumptions no longer hold with the widespread implementation of renewable energy sources. Future electric power systems will comprise of a more distributed grid of loads and Distributed Energy Resources (DERs), all contributing to electricity service goals. Novel modeling and control for their provable performance are actively being pursued. This thesis builds on the idea of novel modeling and controlling future electric power systems using a multi-level modular approach. Particular emphasis is on general simulation tools for assessing dependence of these new architectures on control design. A MATLAB-based Centralized Automated Modeling of Power Systems (CAMPS) software models the primary dynamics of components in a modular way and develops a centralized model of the interconnected system. In this thesis further extensions to CAMPS improve plotting of state variables and their expressions, enable conversion from the dq (direct quadrature) reference frame to the abc-reference frame, and allow substitution of different controllers into an open loop model. A recently introduced modeling approach, which maps voltage and current variables into the energy space and interactively exchanges energy space variables called interaction variables between components, is used as the starting model for new simulations. One energy space-based controller is simulated using Simulink to test the controller's performance when using a switching model instead of an average model. A new software tool, Plug-And-Play Automated Modeling of Power Systems (PAMPS) based on this recent theoretical work implements distributed algorithms in MATLAB. One example applies PAMPS to a RL (resistive and inductive) circuit controlled by a voltage source and connected to a constant power load. Future work can use PAMPS to model additional electrical components including synchronous machines and solar inverters. Since PAMPS exchanges information within the energy space, it can also be applied in future work to model the interactions between multi-energy sources such as mechanical and thermal energy conversion components.


Grid Converters for Photovoltaic and Wind Power Systems

Grid Converters for Photovoltaic and Wind Power Systems
Author: Remus Teodorescu
Publisher: John Wiley & Sons
Total Pages: 358
Release: 2011-07-28
Genre: Technology & Engineering
ISBN: 1119957206

Download Grid Converters for Photovoltaic and Wind Power Systems Book in PDF, ePub and Kindle

Grid converters are the key player in renewable energy integration. The high penetration of renewable energy systems is calling for new more stringent grid requirements. As a consequence, the grid converters should be able to exhibit advanced functions like: dynamic control of active and reactive power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: modern grid inverter topologies for photovoltaic and wind turbines islanding detection methods for photovoltaic systems synchronization techniques based on second order generalized integrators (SOGI) advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active damping techniques power control under grid fault conditions, considering both positive and negative sequences Grid Converters for Photovoltaic and Wind Power Systems is intended as a coursebook for graduated students with a background in electrical engineering and also for professionals in the evolving renewable energy industry. For people from academia interested in adopting the course, a set of slides is available for download from the website. www.wiley.com/go/grid_converters


Emerging Power Converters for Renewable Energy and Electric Vehicles

Emerging Power Converters for Renewable Energy and Electric Vehicles
Author: Md. Rabiul Islam
Publisher: CRC Press
Total Pages: 419
Release: 2021-05-30
Genre: Technology & Engineering
ISBN: 1000374092

Download Emerging Power Converters for Renewable Energy and Electric Vehicles Book in PDF, ePub and Kindle

This book covers advancements of power electronic converters and their control techniques for grid integration of large-scale renewable energy sources and electrical vehicles. Major emphasis is on transformer-less direct grid integration, bidirectional power transfer, compensation of grid power quality issues, DC system protection and grounding, interaction in mixed AC/DC systems, AC and DC system stability, design of high-frequency high power density systems with advanced soft magnetic materials, modeling and simulation of mixed AC/DC systems, switching strategies for enhanced efficiency, and protection and reliability for sustainable grid integration. This book is an invaluable resource for professionals active in the field of renewable energy and power conversion. Md. Rabiul Islam received his PhD from the University of Technology Sydney (UTS), Australia. He was appointed as a Lecturer at Rajshahi University of Engineering & Technology (RUET) in 2005 and promoted to full-term Professor in 2017. In early 2018, he joined the School of Electrical, Computer, and Telecommunications Engineering, University of Wollongong, Australia. He is a Senior Member of IEEE. His research interests include the fields of power electronic converters, renewable energy technologies, power quality, electrical machines, electric vehicles, and smart grids. He has authored or coauthored more than 200 publications including 50 IEEE Transactions/IEEE Journal papers. He has been serving as an editor for IEEE Transactions on Energy Conversion and IEEE Power Engineering Letters, and associate editor for IEEE Access. Md. Rakibuzzaman Shah is a Senior Lecturer with the School of Engineering, Information Technology and Physical Science at Federation University Australia. He has worked and consulted with distribution network operators and transmission system operators on individual projects and has done collaborative work on a large number of projects (EPSRC project on multi-terminal HVDC, Scottish and Southern Energy multi-infeed HVDC) - primarily on the dynamic impact of integrating new technologies and power electronics into large systems. He is an active member of the IEEE and CIGRE. He has more than 70 international publications and has spoken at the leading power system conferences around the world. His research interests include future power grids (i.e., renewable energy integration, wide-area control), asynchronous grid connection through VSC-HVDC, application of data mining in power system, distribution system energy management, and low carbon energy systems. Mohd. Hasan Ali is currently an Associate Professor with the Electrical and Computer Engineering Department at the University of Memphis, USA, where he leads the Electric Power and Energy Systems (EPES) Laboratory. His research interests include advanced power systems, smart-grid and microgrid systems, renewable energy systems, and cybersecurity issues in modern power grids. Dr. Ali has more than 190 publications, including 2 books, 4 book chapters, 2 patents, 60 top ranked journal papers, 96 peer-reviewed international conference papers, and 20 national conference papers. He serves as the editor of the IEEE Transactions on Sustainable Energy and IET-Generation, Transmission and Distribution (GTD) journal. Dr. Ali is a Senior Member of the IEEE Power and Energy Society (PES). He is also the Chair of the PES of the IEEE Memphis Section.