Model Predictive Control Of An Internal Combustion Engine PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Model Predictive Control Of An Internal Combustion Engine PDF full book. Access full book title Model Predictive Control Of An Internal Combustion Engine.

Nonlinear Model Predictive Control of Combustion Engines

Nonlinear Model Predictive Control of Combustion Engines
Author: Thivaharan Albin Rajasingham
Publisher: Springer Nature
Total Pages: 330
Release: 2021-04-27
Genre: Technology & Engineering
ISBN: 303068010X

Download Nonlinear Model Predictive Control of Combustion Engines Book in PDF, ePub and Kindle

This book provides an overview of the nonlinear model predictive control (NMPC) concept for application to innovative combustion engines. Readers can use this book to become more expert in advanced combustion engine control and to develop and implement their own NMPC algorithms to solve challenging control tasks in the field. The significance of the advantages and relevancy for practice is demonstrated by real-world engine and vehicle application examples. The author provides an overview of fundamental engine control systems, and addresses emerging control problems, showing how they can be solved with NMPC. The implementation of NMPC involves various development steps, including: • reduced-order modeling of the process; • analysis of system dynamics; • formulation of the optimization problem; and • real-time feasible numerical solution of the optimization problem. Readers will see the entire process of these steps, from the fundamentals to several innovative applications. The application examples highlight the actual difficulties and advantages when implementing NMPC for engine control applications. Nonlinear Model Predictive Control of Combustion Engines targets engineers and researchers in academia and industry working in the field of engine control. The book is laid out in a structured and easy-to-read manner, supported by code examples in MATLAB®/Simulink®, thus expanding its readership to students and academics who would like to understand the fundamental concepts of NMPC. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.


Automotive Model Predictive Control

Automotive Model Predictive Control
Author: Luigi Del Re
Publisher: Springer Science & Business Media
Total Pages: 291
Release: 2010-03-11
Genre: Technology & Engineering
ISBN: 1849960704

Download Automotive Model Predictive Control Book in PDF, ePub and Kindle

Automotive control has developed over the decades from an auxiliary te- nology to a key element without which the actual performances, emission, safety and consumption targets could not be met. Accordingly, automotive control has been increasing its authority and responsibility – at the price of complexity and di?cult tuning. The progressive evolution has been mainly ledby speci?capplicationsandshorttermtargets,withthe consequencethat automotive control is to a very large extent more heuristic than systematic. Product requirements are still increasing and new challenges are coming from potentially huge markets like India and China, and against this ba- ground there is wide consensus both in the industry and academia that the current state is not satisfactory. Model-based control could be an approach to improve performance while reducing development and tuning times and possibly costs. Model predictive control is a kind of model-based control design approach which has experienced a growing success since the middle of the 1980s for “slow” complex plants, in particular of the chemical and process industry. In the last decades, severaldevelopments haveallowedusing these methods also for “fast”systemsandthis hassupporteda growinginterestinitsusealsofor automotive applications, with several promising results reported. Still there is no consensus on whether model predictive control with its high requi- ments on model quality and on computational power is a sensible choice for automotive control.


Introduction to Modeling and Control of Internal Combustion Engine Systems

Introduction to Modeling and Control of Internal Combustion Engine Systems
Author: Lino Guzzella
Publisher: Springer Science & Business Media
Total Pages: 303
Release: 2013-03-14
Genre: Technology & Engineering
ISBN: 3662080036

Download Introduction to Modeling and Control of Internal Combustion Engine Systems Book in PDF, ePub and Kindle

Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.


Predictive Control of Combustion Engines

Predictive Control of Combustion Engines
Author: Frank Allgöwer
Publisher:
Total Pages: 285
Release: 2006
Genre: Internal combustion engines
ISBN: 9783854992202

Download Predictive Control of Combustion Engines Book in PDF, ePub and Kindle


Dynamic Modeling and Predictive Control of a Multi-Mode Combustion Engine

Dynamic Modeling and Predictive Control of a Multi-Mode Combustion Engine
Author:
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN:

Download Dynamic Modeling and Predictive Control of a Multi-Mode Combustion Engine Book in PDF, ePub and Kindle

Abstract : Low temperature combustion (LTC) offers high thermal efficiency and low engine-out nitrogen oxides (NOx) and particulate matter (PM) emissions. Homogeneous charge compression ignition (HCCI), partially premixed charge compression ignition (PPCI) and reactivity-controlled compression ignition (RCCI) are the common LTC modes studied in this research. The primary barrier to implementing the LTC modes in on-road vehicles is their limited operating range due to high cyclic variability and excessive pressure rise rates. The feasible operating range of the LTC modes is only a subset of the speed-load range of the conventional spark ignition (SI) engine. Therefore, a multi-mode engine concept operating in one or more LTC modes and SI mode is a viable option to improve engine performance in terms of efficiency and emissions. The goal of this dissertation is to develop model-based closed loop control of an SI-RCCI-SI multi-mode engine. Control-oriented models and predictive controllers for HCCI, PPCI and RCCI modes are developed to simultaneously control combustion phasing and engine load for an optimal operation of a multi-mode engine. Cyclic variability in HCCI and RCCI modes are modeled using machine learning classification algorithms. Nonlinear model predictive controllers are developed for HCCI and RCCI modes to control combustion phasing and engine load while constraining cyclic variability below 3%. Furthermore, LTC engine operation faces challenges of excessive pressure rise rates that can damage the hardware. To this end, supervised machine learning classification algorithms are developed to model the heat release type which is used as a scheduling variable to develop data-driven model for an LTC engine. Model predictive controller is then developed to control combustion phasing and engine load while constraining maximum pressure rise rate below 8 bar/CAD. RCCI mode offers good control over the combustion event by modulating the start of injection timing of high reactivity fuel and adjusting the premixed ratio of the dual fuels. Therefore, this research focuses on SI-RCCI-SI multi-mode engine concept. The aim of this research is to achieve smooth SI-RCCI-SI mode switching operation at different engine loads and speed. A dynamic model for SI-RCCI-SI multi-mode engine is developed and validated for different transient conditions. The model includes the mode switching dynamics as well as actuator dynamics. A model-based predictive controller framework is developed for SI-RCCI-SI mode switching. The mode switching controller showed good performance during mode transitions and steady state engine operation. The controller is capable of tracking the desired combustion phasing and engine load during mode switching while maintaining $\lambda$ near stoichiometry in SI mode and constraining maximum pressure rise rate below 8 bar/CAD in RCCI mode.


Model Predictive Controller Design for Internal Combustion Engines Based on the Second Law of Thermodynamics

Model Predictive Controller Design for Internal Combustion Engines Based on the Second Law of Thermodynamics
Author: Muataz Abotabik
Publisher:
Total Pages: 0
Release: 2022
Genre: Internal combustion engines
ISBN:

Download Model Predictive Controller Design for Internal Combustion Engines Based on the Second Law of Thermodynamics Book in PDF, ePub and Kindle

Energy resources depletion and worldwide strict emissions policies pose challenges that automotive manufacturers try to overcome through researching advanced powertrain technologies such as lean-burn gasoline, direct injection, homogeneous charge compression ignition engines, powertrain electrification, etc. Most of these developments have been focused on conventional internal combustion engines (ICE) emissions and performance enhancements. Most ICE control strategies are built based on the First Law of Thermodynamics (FLT) i.e., to deliver a specific load requirement, enhancing thermal efficiency, etc. The FLT doesn’t account for in-cylinder high temperature thermodynamics process irreversibilities that cause losses in the work potential; up to 25% of the fuel availability or exergy can be lost to irreversibilities during a single combustion cycle. The second law of thermodynamics (SLT) states that not all energy in an energy source is available to do work; the SLT evaluates the maximum available energy i.e., the exergy in that source after accounting for the losses caused by the irreversibilities. Therefore, including the exergy in an optimal engine control algorithm may lead to improved ICE thermal efficiencies. Specifically, SLT parameters are proposed to be included in an optimal control engine strategy. The control approach is tested using different engine modeling approaches: simplified spark ignition (SI) and compression ignition (CI) engines models, a detailed 1-D GT Power SI engine model with limited model calibration, and a detailed 1-D GT Power SI engine model with extensive model calibration. The outputs of the models provide differing levels of process resolution. Results show that using the SLT parameters with optimal control resulted in better fuel consumption and emissions reduction for each model type.