Model Of Laser Induced Temperature Changes In Solid State Optical Refrigerators PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Model Of Laser Induced Temperature Changes In Solid State Optical Refrigerators PDF full book. Access full book title Model Of Laser Induced Temperature Changes In Solid State Optical Refrigerators.

Optical Refrigeration

Optical Refrigeration
Author: Richard I. Epstein
Publisher: John Wiley & Sons
Total Pages: 258
Release: 2010-12-13
Genre: Science
ISBN: 3527628053

Download Optical Refrigeration Book in PDF, ePub and Kindle

Edited by the two top experts in the field with a panel of International contributors, this is a comprehensive up-to-date review of research and applications. Starting with the basic physical principles of laser cooling of solids, the monograph goes on to discuss the current theoretical issues being resolved and the increasing demands of growth and evaluation of high purity materials suitable for optical refrigeration, while also examining the design and applications of practical cryocoolers. An advanced text for scientists, researchers, engineers, and students (masters, PHDs and Postdoc) in laser and optical material science, and cryogenics.


Issues in Applied Physics: 2011 Edition

Issues in Applied Physics: 2011 Edition
Author:
Publisher: ScholarlyEditions
Total Pages: 3912
Release: 2012-01-09
Genre: Science
ISBN: 1464963371

Download Issues in Applied Physics: 2011 Edition Book in PDF, ePub and Kindle

Issues in Applied Physics / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Applied Physics. The editors have built Issues in Applied Physics: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Applied Physics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Applied Physics: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.


Handbook on the Physics and Chemistry of Rare Earths

Handbook on the Physics and Chemistry of Rare Earths
Author:
Publisher: Elsevier
Total Pages: 373
Release: 2014-07-10
Genre: Science
ISBN: 0444633308

Download Handbook on the Physics and Chemistry of Rare Earths Book in PDF, ePub and Kindle

The Handbook on the Physics and Chemistry of Rare Earths is an ongoing series covering all aspects of rare earth science—chemistry, life sciences, materials science, and physics. The main emphasis of the Handbook is on rare earth elements [Sc, Y and the lanthanides (La through Lu)] but information is also included, whenever relevant, on the closely related actinide elements. The individual chapters are comprehensive, broad, up-to-date critical reviews written by highly experienced invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines and integrates both the fundamentals and applications of these elements and now publishes two volumes a year. Individual chapters are comprehensive, broad, critical reviews Contributions are written by highly experienced, invited experts Up-to-date overviews of developments in the field


Measurement of Solid-state Optical Refrigeration by Two-band Differential Luminescence Thermometry

Measurement of Solid-state Optical Refrigeration by Two-band Differential Luminescence Thermometry
Author:
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:

Download Measurement of Solid-state Optical Refrigeration by Two-band Differential Luminescence Thermometry Book in PDF, ePub and Kindle

We present a non-contact spectroscopic teclmique for the measurement of laser-induced temperature changes in solids. Two-band differential luminescence thermometry (TBDLT) achieves a sensitivity of ≈7 mK and enables precise measurement of the net quantum efficiency of optical refrigerator materials. TBDLT detects internal temperature changes by decoupling surface and bulk heating effects via time-resolved luminescence spectroscopy. Several Yb{sup 3+}-doped fluorozirconate (ZBLANI) glasses fabricated from precursors of varying purity and by different processes are analyzed in detail. A net quantum efficiency of 97.39% at 238 K (at a pump wavelength of 1020.5 nm) is found for a ZBLANI:1%Yb{sup 3+} laser-cooling sample produced from metal fluoride precursors that were purified by chelate-assisted solvent extraction and dried in hydrofluoric gas. In comparison, a ZBLANI:1%Yb{sup 3+} sample produced from commercial-grade metal fluoride precursors showed pronounced laser-induced heating that is indicative of a substantially higher impurity concentration. TBDLT enables rapid and sensitive benchmarking of laser-cooling materials and provides critical feedback to the development and optimization of high-performance optical cryocooler materials.


Laser Cooling of Solids

Laser Cooling of Solids
Author: S V Petrushkin
Publisher: Elsevier
Total Pages: 237
Release: 2009-10-26
Genre: Technology & Engineering
ISBN: 1845696832

Download Laser Cooling of Solids Book in PDF, ePub and Kindle

Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors.Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews previous experimental investigations in laser cooling and presents progress towards key potential applications


Laser Cooling

Laser Cooling
Author: Galina Nemova
Publisher: CRC Press
Total Pages: 478
Release: 2016-10-26
Genre: Science
ISBN: 9814745057

Download Laser Cooling Book in PDF, ePub and Kindle

In the recent decades, laser cooling or optical refrigeration—a physical process by which a system loses its thermal energy as a result of interaction with laser light—has garnered a great deal of scientific interest due to the importance of its applications. Optical solid-state coolers are one such application. They are free from liquids as well as moving parts that generate vibrations and introduce noise to sensors and other devices. They are based on reliable laser diode pump systems. Laser cooling can also be used to mitigate heat generation in high-power lasers. This book compiles and details cutting-edge research in laser cooling done by various scientific teams all over the world that are currently revolutionizing optical refrigerating technology. It includes recent results on laser cooling by redistribution of radiation in dense gas mixtures, three conceptually different approaches to laser cooling of solids such as cooling with anti-Stokes fluorescence, Brillouin cooling, and Raman cooling. It also discusses crystal growth and glass production for laser cooling applications. This book will appeal to anyone involved in laser physics, solid-state physics, low-temperature physics or cryogenics, materials research, development of temperature sensors, or infrared detectors.


Laser (Cooling) Refrigeration in Erbium Based Solid State Materials

Laser (Cooling) Refrigeration in Erbium Based Solid State Materials
Author: Jonathan William Lynch
Publisher:
Total Pages: 134
Release: 2015
Genre:
ISBN:

Download Laser (Cooling) Refrigeration in Erbium Based Solid State Materials Book in PDF, ePub and Kindle

The objective of this study was to investigate the potential of erbium based solid state materials for laser refrigeration in bulk material. A great deal of work in the field has been focused on the use of ytterbium based ZBLAN glass. Some experiments have also reported cooling in thulium based solid state materials but with considerably less success. We proposed that erbium had many attractive features compared to ytterbium and therefore should be tried for cooling. The low lying energy level structure of erbium provides energy levels that could bring obtainable temperatures two orders of magnitude lower. Erbium transitions of interest for cooling fall in the near IR region (0.87 microns and 1.5 microns). Lasers for one of these transitions, in the 1.5 micron region, are well developed for communication and are in the eye-safe and water and atmosphere transparent region. Theoretical calculations are also presented so as to identify energy levels of the eleven 4f electrons in Er3+ in Cs2NaYCl6:Er3+ and the transitions between them. The strengths of the optical transitions between them have been calculated. Knowledge of such energy levels and the strength of the laser induced transitions between them is crucial for understanding the refrigeration mechanisms and different energy transfer pathways following the laser irradiation. The crystal host for erbium was a hexa-chloro-elpasolite crystal, Cs2NaYCl6:Er3+ with an 80% (stoichiometric) concentration of erbium. The best cooling results were obtained using the 0.87 micron transition. We have demonstrated bulk cooling in this crystal with a temperature difference of ~6.2 K below the surrounding temperature. The temperatures of the crystal and its immediate surrounding environment were measured using differential thermometry. Refrigeration experiments using the 1.5 micron transition were performed and the results are presented. The demonstrated temperature difference was orders of magnitude smaller. Only a temperature of ~0.015 K below the temperature of the surrounding environment was observed in this case. These results are in agreement with another group's that has observed cooling, though a slightly poorer temperature difference, using this transition of erbium (Condon et. al., 2009). Cooling was also attempted in the 0.87 micron transition of another crystal host, KPb2Cl5:Er, which has a concentration of about one percent of erbium. We did not observe any cooling in this crystal. However, the first cooling reports in erbium based systems were with this crystal where another group observed cooling by 0.7 K using the same transition (Fernández, García-Adeva, & Balda, 2006).


Laser Cooling of Solids

Laser Cooling of Solids
Author: Richard I. Epstein
Publisher: SPIE-International Society for Optical Engineering
Total Pages: 140
Release: 2007
Genre: Science
ISBN:

Download Laser Cooling of Solids Book in PDF, ePub and Kindle

Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.


Oxide Electronics

Oxide Electronics
Author: Asim K. Ray
Publisher: John Wiley & Sons
Total Pages: 628
Release: 2021-04-12
Genre: Technology & Engineering
ISBN: 1119529476

Download Oxide Electronics Book in PDF, ePub and Kindle

Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.