Mid Infrared Quantum Cascade Lasers For Chaos Secure Communications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mid Infrared Quantum Cascade Lasers For Chaos Secure Communications PDF full book. Access full book title Mid Infrared Quantum Cascade Lasers For Chaos Secure Communications.

Mid-infrared Quantum Cascade Lasers for Chaos Secure Communications

Mid-infrared Quantum Cascade Lasers for Chaos Secure Communications
Author: Olivier Spitz
Publisher: Springer Nature
Total Pages: 179
Release: 2021-05-15
Genre: Science
ISBN: 3030743071

Download Mid-infrared Quantum Cascade Lasers for Chaos Secure Communications Book in PDF, ePub and Kindle

The mid-infrared domain is a promising optical domain because it holds two transparency atmospheric windows, as well as the fingerprint of many chemical compounds. Quantum cascade lasers (QCLs) are one of the available sources in this domain and have already been proven useful for spectroscopic applications and free-space communications. This thesis demonstrates how to implement a private free-space communication relying on mid-infrared optical chaos and this requires an accurate cartography of non-linear phenomena in quantum cascade lasers. This private transmission is made possible by the chaos synchronization of two twin QCLs. Chaos in QCLs can be generated under optical injection or external optical feedback. Depending on the parameters of the optical feedback, QCLs can exhibit several non-linear phenomena in addition to chaos. Similarities exist between QCLs and laser diodes when the chaotic dropouts are synchronized with an external modulation, and this effect is known as the entrainment phenomenon. With a cross-polarization reinjection technique, QCLs can generate all-optical square-waves. Eventually, it is possible to trigger optical extreme events in QCLs with tilted optical feedback. All these experimental results allow a better understanding of the non-linear dynamics of QCLs and will extend the potential applications of this kind of semiconductor lasers.


Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers

Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers
Author: Louise Jumpertz
Publisher: Springer
Total Pages: 152
Release: 2017-08-31
Genre: Science
ISBN: 3319658794

Download Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers Book in PDF, ePub and Kindle

This thesis presents the first comprehensive analysis of quantum cascade laser nonlinear dynamics and includes the first observation of a temporal chaotic behavior in quantum cascade lasers. It also provides the first analysis of optical instabilities in the mid-infrared range. Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become widely used in applications such as gas spectroscopy, free-space communications or optical countermeasures. Applying external perturbations such as optical feedback or optical injection leads to a strong modification of the quantum cascade laser properties. Optical feedback impacts the static properties of mid-infrared Fabry–Perot and distributed feedback quantum cascade lasers, inducing power increase; threshold reduction; modification of the optical spectrum, which can become either single- or multimode; and enhanced beam quality in broad-area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum cascade laser subject to optical feedback can oscillate periodically or even become chaotic. A quantum cascade laser under external control could therefore be a source with enhanced properties for the usual mid-infrared applications, but could also address new applications such as tunable photonic oscillators, extreme events generators, chaotic Light Detection and Ranging (LIDAR), chaos-based secured communications or unpredictable countermeasures.


Quantum Cascade Lasers

Quantum Cascade Lasers
Author: Jérôme Faist
Publisher: Oxford University Press
Total Pages: 321
Release: 2013-03-14
Genre: Science
ISBN: 0198528248

Download Quantum Cascade Lasers Book in PDF, ePub and Kindle

This book describes the physics, fabrication technology, and applications of the quantum cascade laser.


Mid-Infrared and Terahertz Quantum Cascade Lasers

Mid-Infrared and Terahertz Quantum Cascade Lasers
Author: Dan Botez
Publisher: Cambridge University Press
Total Pages: 552
Release: 2023-09-14
Genre: Technology & Engineering
ISBN: 1108570607

Download Mid-Infrared and Terahertz Quantum Cascade Lasers Book in PDF, ePub and Kindle

Learn how the rapidly expanding area of mid-infrared and terahertz photonics has been revolutionized in this comprehensive overview. State-of-the-art practical applications are supported by real-life examples and expert guidance. Also featuring fundamental theory enabling you to improve performance of both existing and future devices.


Mid-Infrared Quantum-Dot Quantum Cascade Laser

Mid-Infrared Quantum-Dot Quantum Cascade Laser
Author:
Publisher:
Total Pages: 12
Release: 2016
Genre:
ISBN:

Download Mid-Infrared Quantum-Dot Quantum Cascade Laser Book in PDF, ePub and Kindle

In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density can compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.


Mid-Infrared Quantum Cascade Lasers

Mid-Infrared Quantum Cascade Lasers
Author: Alfredo Bismuto
Publisher: LAP Lambert Academic Publishing
Total Pages: 208
Release: 2012-02
Genre:
ISBN: 9783846588376

Download Mid-Infrared Quantum Cascade Lasers Book in PDF, ePub and Kindle

This work describes the work performed by the author at the ETH Zurich, under the supervision of Prof. Jerome Faist on the optimization of high performance quantum cascade lasers (QCLs) in the Mid-IR spectral region. The main factors influencing laser performance have therefore been analyzed. In particular the optimization of the laser design in order to improve the electron tranport and the optical gain. In addition a detailed analysis of the fabrication process is performed and a novel process scheme is presented for buried heterostructure lasers.


Quantum Cascade Lasers and Optical Metamaterials

Quantum Cascade Lasers and Optical Metamaterials
Author: Matthew Escarra
Publisher: LAP Lambert Academic Publishing
Total Pages: 236
Release: 2013-01
Genre:
ISBN: 9783659306181

Download Quantum Cascade Lasers and Optical Metamaterials Book in PDF, ePub and Kindle

Quantum cascade (QC) lasers have application in areas such as medical diagnostics and homeland security. Optical metamaterials have novel interactions with light and potential application for sub-wavelength imaging and optical cloaking. This work first explores new approaches to designing QC lasers. High performance QC lasers are described with a voltage defect of only 19 meV, resulting in record voltage efficiency. Lasers with ultra-strong coupling attain 50% wall-plug efficiency. The thermoelectric effect is measured for the first time within QC lasers, informing further performance enhancements. This work then describes two efforts to improve mid-IR metamaterials. Negative refraction bandwidth and dispersion properties are improved through the use of multiple-metamaterial stacks. QC gain regions are added to these metamaterials to reduce their absorption loss. Finally, QC lasers are developed for trace gas sensing of CO2 isotopes, and a techno-economic model is used to value improved CO2 isotope-based sequestration leakage monitoring. QC laser applications in non-invasive tissue measurements, inter-planetary sensors, C60 spectroscopy, and IR countermeasures are also examined.