Microwave Resonators For The Study Of The Quantum To Classical Transition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Microwave Resonators For The Study Of The Quantum To Classical Transition PDF full book. Access full book title Microwave Resonators For The Study Of The Quantum To Classical Transition.

Exploring the Quantum

Exploring the Quantum
Author: Serge Haroche
Publisher: OUP Oxford
Total Pages: 616
Release: 2006-08-11
Genre: Science
ISBN: 0191523240

Download Exploring the Quantum Book in PDF, ePub and Kindle

The counter-intuitive aspects of quantum physics have been long illustrated by thought experiments, from Einstein's photon box to Schrödinger's cat. These experiments have now become real, with single particles - electrons, atoms, or photons - directly unveiling the strange features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.


Coupling Between Quantum Dot Qubits and a Superconducting Microwave Resonator

Coupling Between Quantum Dot Qubits and a Superconducting Microwave Resonator
Author: Cameron King
Publisher:
Total Pages: 100
Release: 2019
Genre:
ISBN:

Download Coupling Between Quantum Dot Qubits and a Superconducting Microwave Resonator Book in PDF, ePub and Kindle

Quantum computing has the potential to achieve better scaling for factoring large numbers, simulating quantum behavior of molecules, and sampling random number distributions. Quantum dot qubits in silicon show strong promise as a qubit platform due to the long decoherence times measured as well as the possibility of leveraging techniques from classical processor fabrication towards scaling to large qubit systems. We examine coupling quantum dot qubits to a superconducting coplanar waveguide, which functions as a single-photon resonator, and this system enables coherent communications between qubit systems. We are concerned with both the hardware and low-level software of quantum computation. We examine geometric modifications to the heterostructure and the electrode geometry to boost the capacitive coupling between a triple dot system and a resonator. We find decreasing the vertical separation between the electrode connected to the resonator and the dots has a positive impact on the coupling strength. Continuing hardware simulations, we consider the issue of low device yield in Si-MOS devices, where despite large singlet-triplet splittings, there was no evidence of Pauli spin blockade. We attributed this to impurities within the oxide and performed a series of simulations that allowed us to determine the required impurity density to lift spin blockade, and found this density consistent with the device yield. Switching to considering different qubit encodings, we compared and contrasted the behavior of three qubits that are resonantly coupled to a superconducting resonator. The three encodings were the charge dipole (CD) qubit, the charge quadrupole (CQ) qubit, and the quantum dot hybrid qubit (QDHQ). In terms of entangling a one photon state with a qubit state, the CD qubit and the CQ qubit behaved similarly, however the CQ qubit does allow arbitrary single qubit gates while being protected from quasistatic charge noise. The QDHQ exhibited better performance (measured by infidelity) when operated at a second-order-sweet spot than both other encodings in the typical charge noise regime. Furthermore, the quantum dot hybrid qubit enables multiple operating points, offering greater tuning flexibility when considering implementation in actual devices.


Quantum Information Science

Quantum Information Science
Author: Riccardo Manenti
Publisher: Oxford University Press
Total Pages: 769
Release: 2023-08-01
Genre: Science
ISBN: 0191091405

Download Quantum Information Science Book in PDF, ePub and Kindle

This book provides an introduction to quantum information science, the science at the basis of the new quantum revolution of this century. It teaches the reader to build and program a quantum computer and leverage its potential. Aimed at quantum physicists and computer scientists, the book covers several topics, including quantum algorithms, quantum chemistry, and quantum engineering of superconducting qubits. Written by two professionals in the experimental and theoretical fields of quantum information science and containing over 200 figures and 100 exercises with solutions and summaries at the end of each chapter, this book is set to become a new standard in the field.


Microcavities

Microcavities
Author: Alexey V. Kavokin
Publisher: Oxford University Press
Total Pages: 608
Release: 2017-04-28
Genre: Technology & Engineering
ISBN: 0191085863

Download Microcavities Book in PDF, ePub and Kindle

Microcavities are semiconductor, metal, or dielectric structures providing optical confinement in one, two or three dimensions. At the end of the 20th century, microcavities have attracted attention due to the discovery of a strong exciton-light coupling regime allowing for the formation of superposition light-matter quasiparticles: exciton-polaritons. In the following century several remarkable effects have been discovered in microcavities, including the Bose-Einstein condensation of exciton-polaritons, polariton lasing, superfluidity, optical spin Hall and spin Meissner effects, amongst other discoveries. Currently, polariton devices exploiting the bosonic stimulation effects at room temperature are being developed by laboratories across the world. This book addresses the physics of microcavities: from classical to quantum optics, from a Boltzmann gas to a superfluid. It provides the theoretical background needed for understanding the complex phenomena in coupled light-matter systems, and it presents a broad overview of experimental progress in the physics of microcavities.


Manipulating Quantum Systems

Manipulating Quantum Systems
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 315
Release: 2020-09-14
Genre: Science
ISBN: 0309499542

Download Manipulating Quantum Systems Book in PDF, ePub and Kindle

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.


The Transition to Chaos

The Transition to Chaos
Author: Linda Reichl
Publisher: Springer Science & Business Media
Total Pages: 692
Release: 2013-11-11
Genre: Science
ISBN: 1475743505

Download The Transition to Chaos Book in PDF, ePub and Kindle

Based on courses given at the universities of Texas and California, this book treats an active field of research that touches upon the foundations of physics and chemistry. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; continues with a detailed discussion of area-preserving maps, integrable quantum systems, spectral properties, path integrals, and periodically driven systems; and concludes by showing how to apply the ideas to stochastic systems. The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature; while problems at the ends of chapters help students clarify their understanding. This new edition has an updated presentation throughout, and a new chapter on open quantum systems.


Decoherence

Decoherence
Author: Maximilian A. Schlosshauer
Publisher: Springer Science & Business Media
Total Pages: 428
Release: 2007-07-28
Genre: Science
ISBN: 3540357750

Download Decoherence Book in PDF, ePub and Kindle

This detailed, accessible introduction to the field of quantum decoherence reviews the basics and then explains the essential consequences of the phenomenon for our understanding of the world. The discussion includes, among other things: How the classical world of our experience can emerge from quantum mechanics; the implications of decoherence for various interpretations of quantum mechanics; recent experiments confirming the puzzling consequences of the quantum superposition principle and making decoherence processes directly observable.