Microwave Circuit Modeling Using Electromagnetic Field Simulation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Microwave Circuit Modeling Using Electromagnetic Field Simulation PDF full book. Access full book title Microwave Circuit Modeling Using Electromagnetic Field Simulation.

Microwave Circuit Modeling Using Electromagnetic Field Simulation

Microwave Circuit Modeling Using Electromagnetic Field Simulation
Author: Daniel G. Swanson
Publisher: Artech House
Total Pages: 508
Release: 2003
Genre: Science
ISBN: 9781580536882

Download Microwave Circuit Modeling Using Electromagnetic Field Simulation Book in PDF, ePub and Kindle

Annotation This practical "how to" book is an ideal introduction to electromagnetic field-solvers. Where most books in this area are strictly theoretical, this unique resource provides engineers with helpful advice on selecting the right tools for their RF (radio frequency) and high-speed digital circuit design work


Introduction to RF Design Using EM Simulators

Introduction to RF Design Using EM Simulators
Author: Hiroaki Kogure
Publisher: Artech House
Total Pages: 309
Release: 2011
Genre: Science
ISBN: 1608071561

Download Introduction to RF Design Using EM Simulators Book in PDF, ePub and Kindle

Richly illustrated and written in an easy-to-comprehend style, this highly accessible resource provides novice engineers and engineering students with a solid introduction to the use of electromagnetics (EM) simulation in RF design. Engineers learn how to use EM software to design microwave circuits and to conduct signal integrity analysis of high-speed digital circuits. This authoritative book describes exactly how microwave and high-speed digital circuits operate, offering practitioners clear troubleshooting guidance for their work with these circuits. Professionals and students also benefit from a thorough overview of the wide range of high-frequency circuits and related EM tools being utilized in the field today.


Co-simulations of Microwave Circuits and High-Frequency Electromagnetic Fields

Co-simulations of Microwave Circuits and High-Frequency Electromagnetic Fields
Author: Mei Song Tong
Publisher: Springer
Total Pages: 0
Release: 2024-03-10
Genre: Technology & Engineering
ISBN: 9789819983063

Download Co-simulations of Microwave Circuits and High-Frequency Electromagnetic Fields Book in PDF, ePub and Kindle

This book aims to provide many advanced application topics for microwave circuits and high-frequency electromagnetic (EM) fields by using advanced design system (ADS) and high-frequency structure simulator (HFSS) as simulation platforms. In particular, it contains the latest multidisciplinary co-simulation guidance on the design of relevant components and devices. Currently, the circuit/field design and performance analysis and optimization strongly rely on various kinds of robust electronic design automation (EDA) software. RF/microwave engineers must grasp two or more types of related simulation design software. ADS by Keysight and HFSS by Ansys are the representative for circuit simulations and for field and structural simulations of microwave devices, respectively. At present, these two types of software are widely used in enterprises, universities, and research institutions. The main purpose of this book is to enable readers, who are interested in microwave engineering and applied electromagnetics, to master the applications of these two tools. It also helps readers expand their knowledge boundaries behind those types of software and deepen their understanding of developing interdisciplinary technologies by co-simulations. The book is divided into three parts. The first part introduces the two latest versions of ADS and HFSS and helps readers better understand the basic principles and latest functions better. It also advises how to choose appropriate simulation tools for different problems. The second part mainly describes co-simulations for high-frequency EM fields, microwave circuits, antenna designs, EM compatibility (EMC), and thermal and structural analyses. It provides guides and advices on performing co-simulations by ADS and HFSS incorporated with other types of software, respectively. The last part narrates the automation interfaces and script programming methods for co-simulations. It primarily deals with the Advanced Extension Language (AEL), Python Data Link (PDL), and MATLAB interface in ADS. For HFSS, it discusses VBScript, IronPython scripting, and Application Programming Interface (APIs) based on MATLAB. Each topic contains practical examples to help readers understand so that they can gain a solid knowledge and skills regarding automated interfaces and scripting methods based on these kinds of software. Concisely written in combination with practical examples, this book is very suitable as a textbook in introductory courses on microwave circuit and EM simulations and also as a supplementary textbook in many courses on electronics, microwave engineering, communication engineering, and related fields. As well, it can serve as a reference book for microwave engineers and researchers.


2-D Electromagnetic Simulation of Passive Microstrip Circuits

2-D Electromagnetic Simulation of Passive Microstrip Circuits
Author: Alejandro D. Jimenez
Publisher: CRC Press
Total Pages: 268
Release: 2018-10-03
Genre: Technology & Engineering
ISBN: 1351834509

Download 2-D Electromagnetic Simulation of Passive Microstrip Circuits Book in PDF, ePub and Kindle

Global Demand for Streamlined Design and Computation The explosion of wireless communications has generated a tidal wave of interest and development in computational techniques for electromagnetic simulation as well as the design and analysis of RF and microwave circuits. Learn About Emerging Disciplines, State-of-the-Art Methods 2-D Electromagnetic Simulation of Passive Microstrip Circuits describes this simple procedure in order to provide basic knowledge and practical insight into quotidian problems of microstrip passive circuits applied to microwave systems and digital technologies. The text dissects the latest emerging disciplines and methods of microwave circuit analysis, carefully balancing theory and state-of-the-art experimental concepts to elucidate the process of analyzing high-speed circuits. The author covers the newer techniques – such as the study of signal integrity within circuits, and the use of field map interpretations – employed in powerful electromagnetic simulation analysis methods. But why and how does the intrinsic two-dimensional simulation model used here reduce numerical error? Step-by-Step Simulation Provides Insight and Understanding The author presents the FDTD electromagnetic simulation method, used to reproduce different microstrip test circuits, as well as an explanation of the complementary electrostatic method of moments (MoM). Each reproduces different microstrip test circuits that are physically constructed and then studied, using a natural methodological progression to facilitate understanding. This approach gives readers a solid comprehension and insight into the theory and practical applications of the microstrip scenario, with emphasis on high-speed interconnection elements.


Finite Element Method Electromagnetics

Finite Element Method Electromagnetics
Author: John L. Volakis
Publisher: John Wiley & Sons
Total Pages: 364
Release: 1998-06-15
Genre: Science
ISBN: 9780780334250

Download Finite Element Method Electromagnetics Book in PDF, ePub and Kindle

Employed in a large number of commercial electromagnetic simulation packages, the finite element method is one of the most popular and well-established numerical techniques in engineering. This book covers the theory, development, implementation, and application of the finite element method and its hybrid versions to electromagnetics. FINITE ELEMENT METHOD FOR ELECTROMAGNETICS begins with a step-by-step textbook presentation of the finite method and its variations then goes on to provide up-to-date coverage of three dimensional formulations and modern applications to open and closed domain problems. Worked out examples are included to aid the reader with the fine features of the method and the implementation of its hybridization with other techniques for a robust simulation of large scale radiation and scattering. The crucial treatment of local boundary conditions is carefully worked out in several stages in the book. Sponsored by: IEEE Antennas and Propagation Society.


RF and Microwave Circuits, Measurements, and Modeling

RF and Microwave Circuits, Measurements, and Modeling
Author: Mike Golio
Publisher: CRC Press
Total Pages: 772
Release: 2018-10-08
Genre: Technology & Engineering
ISBN: 1420006703

Download RF and Microwave Circuits, Measurements, and Modeling Book in PDF, ePub and Kindle

Highlighting the challenges RF and microwave circuit designers face in their day-to-day tasks, RF and Microwave Circuits, Measurements, and Modeling explores RF and microwave circuit designs in terms of performance and critical design specifications. The book discusses transmitters and receivers first in terms of functional circuit block and then examines each block individually. Separate articles consider fundamental amplifier issues, low noise amplifiers, power amplifiers for handset applications and high power, power amplifiers. Additional chapters cover other circuit functions including oscillators, mixers, modulators, phase locked loops, filters and multiplexers. New chapters discuss high-power PAs, bit error rate testing, and nonlinear modeling of heterojunction bipolar transistors, while other chapters feature new and updated material that reflects recent progress in such areas as high-volume testing, transmitters and receivers, and CAD tools. The unique behavior and requirements associated with RF and microwave systems establishes a need for unique and complex models and simulation tools. The required toolset for a microwave circuit designer includes unique device models, both 2D and 3D electromagnetic simulators, as well as frequency domain based small signal and large signal circuit and system simulators. This unique suite of tools requires a design procedure that is also distinctive. This book examines not only the distinct design tools of the microwave circuit designer, but also the design procedures that must be followed to use them effectively.


Nonlinear Circuit Simulation and Modeling

Nonlinear Circuit Simulation and Modeling
Author: José Carlos Pedro
Publisher: Cambridge University Press
Total Pages: 362
Release: 2018-06-14
Genre: Technology & Engineering
ISBN: 1108646417

Download Nonlinear Circuit Simulation and Modeling Book in PDF, ePub and Kindle

Discover the nonlinear methods and tools needed to design real-world microwave circuits with this tutorial guide. Balancing theoretical background with practical tools and applications, it covers everything from the basic properties of nonlinear systems such as gain compression, intermodulation and harmonic distortion, to nonlinear circuit analysis and simulation algorithms, and state-of-the-art equivalent circuit and behavioral modeling techniques. Model formulations discussed in detail include time-domain transistor compact models and frequency-domain linear and nonlinear scattering models. Learn how to apply these tools to designing real circuits with the help of a power amplifier design example, which covers all stages from active device model extraction and the selection of bias and terminations, through to performance verification. Realistic examples, illustrative insights and clearly conveyed mathematical formalism make this an essential learning aid for both professionals working in microwave and RF engineering and graduate students looking for a hands-on guide to microwave circuit design.


Simulation-Driven Design Optimization and Modeling for Microwave Engineering

Simulation-Driven Design Optimization and Modeling for Microwave Engineering
Author: Slawomir Koziel
Publisher: World Scientific
Total Pages: 526
Release: 2013
Genre: Technology & Engineering
ISBN: 1848169175

Download Simulation-Driven Design Optimization and Modeling for Microwave Engineering Book in PDF, ePub and Kindle

On the other hand, various interactions between microwave devices and their environment, such as feeding structures and housing, must be taken into account, and this is only possible through full-wave EM analysis. Electromagnetic simulations can be highly accurate, but they tend to be computationally expensive. Therefore, practical design optimization methods have to be computationally efficient, so that the number of CPU-intensive high-fidelity EM simulations is reduced as much as possible during the design process. For the same reasons, techniques for creating fast yet accurate models of microwave structures become crucially important. In this edited book, the authors strive to review the state-of-the-art simulation-driven microwave design optimization and modeling. A group of international experts specialized in various aspects of microwave computer-aided design summarize and review a wide range of the latest developments and real-world applications.


Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation

Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation
Author: Anna Pietrenko-Dabrowska
Publisher: Springer Nature
Total Pages: 604
Release: 2023-10-16
Genre: Technology & Engineering
ISBN: 3031438450

Download Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation Book in PDF, ePub and Kindle

This book discusses response feature technology and its applications to modeling, optimization, and computer-aided design of high-frequency structures including antenna and microwave components. By exploring the specific structure of the system outputs, feature-based approaches facilitate simulation-driven design procedures, both in terms of improving their computational efficiency and reliability. These benefits are associated with the weakly nonlinear relationship between feature point coordinates and design variables, which—in the context of optimization—leads to inherent regularization of the objective functions. The book provides an overview of the subject, a definition and extraction of characteristic points, and feature-based design problem reformulation. It also outlines a number of numerical algorithms developed to handle local, global, and multi-criterial design, surrogate modeling, as well as uncertainty quantification. The discussed frameworks are extensively illustrated using examples of real microwave and antenna structures, along with numerous design cases. Introductory material on simulation-driven design, numerical optimization, as well as behavioral and physics-based surrogate modeling is also included. The book will be useful for readers working in the area of high-frequency electronics, including microwave engineering, antenna design, microwave photonics, magnetism and especially those who utilize electromagnetic (EM) simulation models in their daily routines.