Microstructure And Electrical Property Characterization Of Barium Strontium Titanate Thin Films Prepared By A Sol Gel Technique For Dram Capacitor Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Microstructure And Electrical Property Characterization Of Barium Strontium Titanate Thin Films Prepared By A Sol Gel Technique For Dram Capacitor Applications PDF full book. Access full book title Microstructure And Electrical Property Characterization Of Barium Strontium Titanate Thin Films Prepared By A Sol Gel Technique For Dram Capacitor Applications.

Microstructural and Electrical Characterization of Barium Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition

Microstructural and Electrical Characterization of Barium Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition
Author: Costas G. Fountzoulas
Publisher:
Total Pages: 6
Release: 2003
Genre:
ISBN:

Download Microstructural and Electrical Characterization of Barium Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition Book in PDF, ePub and Kindle

Ferroelectrics are multicomponent materials with a wealth of interesting and useful properties, such as piezoelectricity. The dielectric constant of the BSTO ferroelectrics can be changed by applying an electric field. Variable dielectric constant results in a change in phase velocity in the device allowing it to be tuned in real time for a particular application. The microstructure of the film influences the electronic properties which in turn influences the performance of the film. Ba(0.6)Sr(0.4)Ti(1-y)(A(3+), B(5+))(y)O3 thin films, of nominal thickness of 0.65 micrometer, were synthesized initially at substrate temperatures of 400 deg C, and subsequently annealed to 750 deg C, on LaAlO3 (100) substrates, previously coated with LaSrCoO conductive buffer layer, using the pulsed laser deposition technique. The microstructural and physical characteristics of the post-annealed thin films have been studied using x-ray diffraction, scanning electron microscopy, and nano indentation and are reported. Results of capacitance measurements are used to obtain dielectric constant and tunability in the paraelectric (T>Tc) regime.


Synthesis, Characterization and Applications of Barium Strontium Titanate Thin Film Structures

Synthesis, Characterization and Applications of Barium Strontium Titanate Thin Film Structures
Author: Supriya Ashok Ketkar
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:

Download Synthesis, Characterization and Applications of Barium Strontium Titanate Thin Film Structures Book in PDF, ePub and Kindle

Barium Strontium Titanate (BST) based ferroelectric thin film devices have been popular over the last decade due to their versatile applications in tunable microwave devices such as delay lines, resonators, phase shifters, and varactors. BST thin films are promising candidates due to their high dielectric constant, tunability and low dielectric loss. Dielectric-tunable properties of BST films deposited by different deposition techniques have been reported which study the effects of factors, such as oxygen vacancies, film thickness, grain size, Ba/Sr ratio, etc. Researchers have also studied doping concentrations, high temperature annealing and multilayer structures to attain higher tunability and lower loss. The aim of this investigation was to study material properties of Barium Strontium Titanate from a comprehensive point of view to establish relations between various growth techniques and the film physical and electrical properties. The primary goal of this investigation was to synthesize and characterize RF magnetron sputtered Barium Strontium Titanate (Ba1-xSrxTiO3), thin film structures and compare their properties with BST thin films deposited by sol-gel method with the aim of determining relationships between the oxide deposition parameters, the film structure, and the electric field dependence. In order to achieve higher thickness and ease of fabrication, and faster turn around time, a [grave]stacked' deposition process was adopted, wherein a thin film (around 200nm) of BST was first deposited by RF magnetron sputtering process followed by a sol-gel deposition process to achieve higher thickness. The investigation intends to bridge the knowledge gap associated with the dependence of thickness variation with respect to the tunability of the films. The film structures obtained using the three different deposition methods were also compared with respect to their analytical and electrical properties.


Microstructure and Nonstoichiometry of Barium Strontium Titanate Thin Films for Dram Applications

Microstructure and Nonstoichiometry of Barium Strontium Titanate Thin Films for Dram Applications
Author:
Publisher:
Total Pages: 9
Release: 1999
Genre:
ISBN:

Download Microstructure and Nonstoichiometry of Barium Strontium Titanate Thin Films for Dram Applications Book in PDF, ePub and Kindle

In this paper we investigate the microstructural accommodation of nonstoichiometry in (Ba(subscript x)Sr{sub 1-x}Ti{sub 1+y}O{sub 3+z}) thin films grown by chemical vapor deposition. Films with three different (Ba+Sr)/Ti ratios of 49/51 (y=0.04 in the notation of the formula above), of 48/52 (y=0.08) and of 46.5/53.5 (y=O.15), were studied. High-resolution electron microscopy is used to study the microstructure of the BST films. High-spatial resolution electron energy-loss spectroscopy (EELS) is used to reveal changes in chemistry and local atomic environment both at grain boundaries and within grains as a function of titanium excess. We find an amorphous phase at the grain boundaries and grain boundary segregation of excess titanium in the samples with y=0.15. In addition, EELS is also used to show that excess titanium is being partially accommodated in the grain interior. Implications for the film electrical and dielectric properties are outlined.