Microbial Symbiosis Of Marine Sessile Hosts Diversity And Function PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Microbial Symbiosis Of Marine Sessile Hosts Diversity And Function PDF full book. Access full book title Microbial Symbiosis Of Marine Sessile Hosts Diversity And Function.

Microbial Symbiosis of Marine Sessile Hosts - Diversity, Function and Applications

Microbial Symbiosis of Marine Sessile Hosts - Diversity, Function and Applications
Author: Suhelen Egan
Publisher: Frontiers Media SA
Total Pages: 110
Release: 2015-12-21
Genre: Microbiology
ISBN: 288919681X

Download Microbial Symbiosis of Marine Sessile Hosts - Diversity, Function and Applications Book in PDF, ePub and Kindle

Modern molecular -omics tools (metagenomics, metaproteomics etc.) have greatly contributed to the rapid advancement of our understanding of microbial diversity and function in the world’s oceans. These tools are now increasingly applied to host-associated environments to describe the symbiotic microbiome and obtain a holistic view of marine host-microbial interactions. Whilst all eukaryotic hosts are likely to benefit from their microbial associates, marine sessile eukaryotes, including macroalgae, seagrasses and various invertebrates (sponges, acidians, corals, hydroids etc), rely in particular on the function of their microbiome. For example, marine sessile eukaryotes are under constant grazing, colonization and fouling pressure from the millions of micro- and macroorganisms in the surrounding seawater. Host-associated microorganisms have been shown to produce secondary metabolites as defense molecules against unwanted colonization or pathogens, thus having an important function in host health and survival. Similarly microbial symbionts of sessile eukaryotes are often essential players in local nutrient cycling thus benefiting both the host and the surrounding ecosystem. Various research fields have contributed to generating knowledge of host-associated systems, including microbiology, biotechnology, molecular biology, ecology, evolution and biotechnology. Through a focus on model marine sessile host systems we believe that new insight into the interactions between host and microbial symbionts will be obtained and important areas of future research will be identified. This research topic includes original research, review and opinion articles that bring together the knowledge from different aspects of biology and highlight advances in our understanding of the diversity and function of the microbiomes on marine sessile hosts.


Microbial Symbiosis of Marine Sessile Hosts - Diversity and Function

Microbial Symbiosis of Marine Sessile Hosts - Diversity and Function
Author:
Publisher:
Total Pages: 0
Release: 2015
Genre:
ISBN:

Download Microbial Symbiosis of Marine Sessile Hosts - Diversity and Function Book in PDF, ePub and Kindle

Modern molecular -omics tools (metagenomics, metaproteomics etc.) have greatly contributed to the rapid advancement of our understanding of microbial diversity and function in the world's oceans. These tools are now increasingly applied to host-associated environments to describe the symbiotic microbiome and obtain a holistic view of marine host-microbial interactions. Whilst all eukaryotic hosts are likely to benefit from their microbial associates, marine sessile eukaryotes, including macroalgae, seagrasses and various invertebrates (sponges, acidians, corals, hydroids etc), rely in particular on the function of their microbiome. For example, marine sessile eukaryotes are under constant grazing, colonization and fouling pressure from the millions of micro- and macroorganisms in the surrounding seawater. Host-associated microorganisms have been shown to produce secondary metabolites as defense molecules against unwanted colonization or pathogens, thus having an important function in host health and survival. Similarly microbial symbionts of sessile eukaryotes are often essential players in local nutrient cycling thus benefiting both the host and the surrounding ecosystem. Various research fields have contributed to generating knowledge of host-associated systems, including microbiology, biotechnology, molecular biology, ecology, evolution and biotechnology. Through a focus on model marine sessile host systems we believe that new insight into the interactions between host and microbial symbionts will be obtained and important areas of future research will be identified. This research topic includes original research, review and opinion articles that bring together the knowledge from different aspects of biology and highlight advances in our understanding of the diversity and function of the microbiomes on marine sessile hosts.


Host-Microbe Interactions

Host-Microbe Interactions
Author:
Publisher: Academic Press
Total Pages: 346
Release: 2016-08-03
Genre: Science
ISBN: 0128096179

Download Host-Microbe Interactions Book in PDF, ePub and Kindle

Host-Microbe Interactions, the latest volume in the Progress in Molecular Biology series, provides a forum for the discussion of new discoveries, approaches, and ideas in molecular biology. It contains contributions from leaders in their respective fields, along with abundant references. This volume is dedicated to the subject of host-microbe interactions. Provides the latest research on host-microbe interactions, including new discoveries, approaches, and ideas Contains contributions from leading authorities on topics relating to molecular biology Informs and updates on all the latest developments in the field


Microbial Ecology of the Oceans

Microbial Ecology of the Oceans
Author: Josep M. Gasol
Publisher: John Wiley & Sons
Total Pages: 571
Release: 2018-03-27
Genre: Science
ISBN: 1119107180

Download Microbial Ecology of the Oceans Book in PDF, ePub and Kindle

The newly revised and updated third edition of the bestselling book on microbial ecology in the oceans The third edition of Microbial Ecology of the Oceans features new topics, as well as different approaches to subjects dealt with in previous editions. The book starts out with a general introduction to the changes in the field, as well as looking at the prospects for the coming years. Chapters cover ecology, diversity, and function of microbes, and of microbial genes in the ocean. The biology and ecology of some model organisms, and how we can model the whole of the marine microbes, are dealt with, and some of the trophic roles that have changed in the last years are discussed. Finally, the role of microbes in the oceanic P cycle are presented. Microbial Ecology of the Oceans, Third Edition offers chapters on The Evolution of Microbial Ecology of the Ocean; Marine Microbial Diversity as Seen by High Throughput Sequencing; Ecological Significance of Microbial Trophic Mixing in the Oligotrophic Ocean; Metatranscritomics and Metaproteomics; Advances in Microbial Ecology from Model Marine Bacteria; Marine Microbes and Nonliving Organic Matter; Microbial Ecology and Biogeochemistry of Oxygen-Deficient Water Columns; The Ocean’s Microscale; Ecological Genomics of Marine Viruses; Microbial Physiological Ecology of The Marine Phosphorus Cycle; Phytoplankton Functional Types; and more. A new and updated edition of a key book in aquatic microbial ecology Includes widely used methodological approaches Fully describes the structure of the microbial ecosystem, discussing in particular the sources of carbon for microbial growth Offers theoretical interpretations of subtropical plankton biogeography Microbial Ecology of the Oceans is an ideal text for advanced undergraduates, beginning graduate students, and colleagues from other fields wishing to learn about microbes and the processes they mediate in marine systems.


Marine and Industrial Biofouling

Marine and Industrial Biofouling
Author: Hans-Curt Flemming
Publisher: Springer Science & Business Media
Total Pages: 330
Release: 2008-12-11
Genre: Science
ISBN: 3540697969

Download Marine and Industrial Biofouling Book in PDF, ePub and Kindle

Biofouling is a costly problem, and it is encountered in a wide spectrum of technical systems, ranging from the shipping industry, power industry, water purification, automobile industry, paint and pharmaceuticals, to the microelectronics and food industries. Micro- and macroorganisms attach to surfaces and accumulate there, forming biofilms that cause interferences – a fundamentally natural process. Usually, a medical paradigm is applied: kill biofilms and the problem is solved. This leads to excessive biocide use. However, the success of this strategy is very limited; furthermore it leads to equipment damage and environmental pollution. Simply trying to kill the fouling organisms is clearly not seen as a successful strategy while cleaning is put forward as much more important. In this book, strategies to prevent adhesion, to mitigate the extent and effects of biofouling, and to detect and remove fouling layers are presented. Holistic approaches to the fouling process are elaborated, taking into account options such as nutrient limitation, repellent and easy-to-clean surfaces for fouling layer limitation, and replacing biocides with more environmentally friendly methods – in other words: learning how to live with fouling biofilms without suffering the damage they can do.


The Social Biology of Microbial Communities

The Social Biology of Microbial Communities
Author: Institute of Medicine
Publisher: National Academies Press
Total Pages: 633
Release: 2013-01-10
Genre: Medical
ISBN: 0309264324

Download The Social Biology of Microbial Communities Book in PDF, ePub and Kindle

Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.


Marine Microbial Diversity

Marine Microbial Diversity
Author: Jennie C. Hunter-Cevera
Publisher:
Total Pages: 22
Release: 2005
Genre:
ISBN:

Download Marine Microbial Diversity Book in PDF, ePub and Kindle

Marine microbes are uniquely important to life as we know it. Since life most likely began in the oceans, marine microorganisms are the closest living descendants of the original forms of life. They are also major pillars of the biosphere. Their unique metabolisms allow marine microbes to carry out many steps of the biogeochemical cycles that other organisms are unable to complete. The smooth functioning of these cycles is necessary for life to continue on earth. Early marine microorganisms also helped create the conditions under which subsequent life developed. More than two billion years ago, the generation of oxygen by photosynthetic marine microorganisms helped shape the chemical environment in which plants, animals, and all other life forms have evolved. A great deal of research on the biogeography of marine microorganisms has been carried out, but many unknowns persist, and more work is needed to elucidate and understand their complexity. It is now known that microorganisms live in every corner of the oceans. Their habitats are diverse and include open water, sediment, bodies of marine macro- and microorganisms, estuaries, and hydrothermal vents. By studying these habitats, scientists have developed a limited ability to predict the composition of marine microbial communities. It has also been found that some marine microbes have more cosmopolitan distributions than others. Recent work has found that most of the ecological principles that apply to larger organisms can also be applied to microorganisms, including marine microbes, but there are exceptions. Almost every ecophysiological parameter in the oceans is thought to have an impact on the diversity of microbial communities. Most of the direct interactions marine microorganisms have with larger organisms fall into one of two broad categories: symbiosis or pathogenesis. Beneficial microbial symbioses have enabled many invertebrate species to take advantage of habitats that would otherwise be unavailable to them. Invertebrates in these relationships may also enjoy the benefits of bioactive compounds microbes may produce to prevent bio-fouling or to ward off predators. Marine viruses are found in surprisingly high numbers in seawater, but it is likely that these populations are in equilibrium with their host populations. The metabolic diversity of marine microorganisms allows them to assume many roles in the biogeochemical cycles that other organisms cannot complete. Marine microbes are also able to adapt to the many extreme environments in the oceans. As humans continue to alter the environment, climate change will inevitably impact marine microbial communities and the biogeochemical cycles in which they participate, but the exact nature of these impacts cannot yet be predicted. Human health relies on a number of critical equilibria that marine microorganisms broker, including the balance between viruses and their hosts in the oceans, the balances that keep harmful algal blooms in check, the processes that control nutrient concentrations in marine waters, and others. The metabolic capabilities of marine microbes can be put to work in any number of biotechnology applications, including the manufacture of industrial products and energy production. Marine microbes are sources of novel bioactive compounds that may have application as pharmaceuticals. Potential applications for marine microorganisms in ameliorating environmental degradation also exist. Innovative approaches in research, education, and training are critical for moving the field of marine microbiology forward. Modern research in this field should embrace the new tools of genomics and metagenomics, but not to the exclusion of other methods of discovery. Education and training in marine microbiology needs to be multidisciplinary. Arrangements that expose graduate students and postdoctoral scientists to laboratories that do work outside the students' immediate fields of focus should be encouraged.


Biodiversity of Marine Microbes

Biodiversity of Marine Microbes
Author: Savvas Genitsaris
Publisher: MDPI
Total Pages: 104
Release: 2021-08-31
Genre: Science
ISBN: 3036510524

Download Biodiversity of Marine Microbes Book in PDF, ePub and Kindle

The book entitled “Biodiversity of Marine Microbes” aims at highlighting the significance of marine microbes as primary producers, their contribution in complex ecological processes and their roles in biogeochemical cycles and ecosystem functioning. The book includes five research papers covering the diversity and composition of marine microbial communities representing all three domains of life in various marine environments, including coastal eutrophic areas, ice waters, and lagoons. One paper examines the diversity and succession of bacterial and archaeal communities from coastal waters in mesocosm experiments. The combination of classical tools with novel technological advances implemented in the methods of the papers offered an opportunity to answer fundamental questions and shed light on the complex and diverse life of marine microbes.