Mercury Transformations Under Post Coal Combustion Conditions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mercury Transformations Under Post Coal Combustion Conditions PDF full book. Access full book title Mercury Transformations Under Post Coal Combustion Conditions.

Mercury Emission and its Control in Chinese Coal-Fired Power Plants

Mercury Emission and its Control in Chinese Coal-Fired Power Plants
Author: Jinsong Zhou
Publisher: Springer
Total Pages: 159
Release: 2015-01-13
Genre: Science
ISBN: 3642378749

Download Mercury Emission and its Control in Chinese Coal-Fired Power Plants Book in PDF, ePub and Kindle

"Mercury Emission and its Control in Chinese Coal-Fired Power Plants" focuses on investigating mercury emissions samplings and measurement in Chinese coal-fired power plants, mercury emission estimations and future trends, mercury speciation transformation during coal combustion, mercury control and mercury stability in byproducts. The book not only introduces mercury emissions from actual coal-fired power plants, but also presents studies on the mechanism of mercury emission and its control. This is a valuable reference for engineering thermal physicists, thermal engineers, and chemical engineers. Jinsong Zhou, Zhongyang Luo, and Mengxiang Fang are Professors in the College of Mechanical and Energy Engineering, Zhejiang University, China. Yanqun Zhu is Associate Professor in the College of Mechanical and Energy Engineering, Zhejiang University, China.


Fly Ash and Mercury Oxidation

Fly Ash and Mercury Oxidation
Author:
Publisher:
Total Pages:
Release: 2008
Genre:
ISBN:

Download Fly Ash and Mercury Oxidation Book in PDF, ePub and Kindle

Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 [mu]g/m3 using a diffusion tube as the source of Hg0(g). All experiments were conducted using 4% O2 in nitrogen mix as a reaction gas, and other reactants (HCl, H2O and SO2, NO2, Br2) were added as required. The fixed bed reactor was operated over a temperature range of 200 to 400 C. In each experiment, the reactor effluent was analyzed using the modified Ontario-Hydro method. After each experiment, fly ash particles were also analyzed for mercury. The results show that the ability of fly ash to adsorb and/or oxidize mercury is primarily dependent on its carbon, iron and calcium content. There can be either one or more than one key component at a particular temperature and flue gas condition. Surface area played a secondary role in effecting the mercury transformations when compared to the concentration of the key component in the fly ash. Amount of carbon and surface area played a key important role in the adsorption of mercury. Increased concentration of gases in the flue gas other than oxygen and nitrogen caused decreased the amount of mercury adsorbed on carbon surface. Mercury adsorption by iron oxide primarily depended on the crystalline structure of iron oxide. [alpha]-Iron oxide had no effect on mercury adsorption or oxidation under most of the flue gas conditions, but?-iron oxide adsorbed mercury under most of the flue gas conditions. Bromine is a very good oxidizing agent for mercury. But in the presence of calcium oxide containing fly ashes, all the oxidized mercury would be reduced to elemental form. Among the catalysts, it was observed that presence of free lattice chlorine in the catalyst was very important for the oxidation of mercury. But instead of using the catalyst alone, using it along with carbon may better serve the purpose by providing the adsorption surface for mercury and also some extra surface area for the reaction to occur (especially for fly ashes with low surface area).


Factors Affecting Mercury Emissions from Coal Fired Combustors

Factors Affecting Mercury Emissions from Coal Fired Combustors
Author: Shawn Andrew Kellie
Publisher:
Total Pages: 272
Release: 2005
Genre: Mercury wastes
ISBN:

Download Factors Affecting Mercury Emissions from Coal Fired Combustors Book in PDF, ePub and Kindle

This dissertation investigated some of the factors affecting mercury emissions from coal fired power plants. The research was conducted in three studies. The first study involved the use of a lab scale 0.10 MWth fluidized bed combustor (FBC) to investigate the effects of the Ca/S mole ratio, co-firing municipal solid waste (MSW), combustion conditions and coal chlorine concentration on mercury emissions. The second and third study presented an unprecedented opportunity to study several coals at the same commercially operated 100 MWth boiler. The second study focused on comparing two methods of measuring mercury in flue gas, the Ontario Hydro Method (OHM) and semi-continuous emissions monitoring (SCEM). The third study focused on the mechanism of mercury transformation in flue gas. The data from all the studies lead to the development of a mechanism for the transformation of mercury. In the first study, several factors were found to affect mercury emissions. The chlorine content of the coal and secondary/primary air ratio were found to be important factors.


Mercury Reaction Chemistry in Combustion Flue Gases from Experiments and Theory

Mercury Reaction Chemistry in Combustion Flue Gases from Experiments and Theory
Author: Bihter Padak
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Mercury Reaction Chemistry in Combustion Flue Gases from Experiments and Theory Book in PDF, ePub and Kindle

Emissions from coal combustion processes constitute a significant amount of the elemental mercury released into the atmosphere today. Coal-fired power plants in the United States, with the capacity of just over 300GW, are the greatest anthropogenic source of mercury emissions. Mercury exists in coal combustion flue gas in a variety of forms depending on the coal type and combustion conditions; i.e., elemental, oxidized and particulate. Particulate mercury in the flue gas can be removed using air pollution control devices such as electrostatic precipitators and fabric filters. Oxidized mercury is easily captured by wet flue gas desulfurization scrubbers, while gaseous elemental mercury passes through the scrubbers readily. Activated carbon, when injected into the gas stream of coal-fired boilers, is effective in capturing both elemental and oxidized mercury through adsorption processes. However, the mechanism by which mercury adsorbs on activated carbon is not exactly known and its understanding is crucial to the design and fabrication of effective capture technologies for mercury. The objective of the current study is to apply theoretical-based cluster modeling to examine the possible binding mechanism of mercury on activated carbon. The effects of activated carbon's different surface functional groups and halogens on elemental mercury adsorption have been examined. Also, a thermodynamic approach is followed to examine the binding mechanism of mercury and its oxidized species such as HgCl and HgCl2 on a simulated carbon surface with and without Cl. Energies of different possible surface complexes and possible products are compared and dominant pathways are determined relatively. Since different methods are employed to capture varying forms of mercury, understanding mercury speciation during combustion and how the transformations occur between different forms is essential to developing an effective control mechanism for removing mercury from flue gas. In this study, homogeneous oxidation of mercury via chlorine is examined experimentally in a simulated flue gas environment. Mercury and chlorine are introduced into a laminar premixed methane-air flame. Cooled flue gas is sampled and sent to a custom-built electron ionization quadrupole mass spectrometer specially designed for mercury measurement on the order of parts per billion (ppb) in flue gas. The use of a mass spectrometer allows for distinguishing between the different forms of oxidized mercury (Hg+, Hg+2). By directly measuring mercury species accurately, one can determine the actual extent of mercury oxidation in the flue gas, which will aid in further developing mercury control technologies.


Mercury Control

Mercury Control
Author: Evan J. Granite
Publisher: John Wiley & Sons
Total Pages: 479
Release: 2015-01-20
Genre: Technology & Engineering
ISBN: 3527329498

Download Mercury Control Book in PDF, ePub and Kindle

This essential handbook and ready reference offers a detailed overview of the existing and currently researched technologies available for the control of mercury in coal-derived gas streams and that are viable for meeting the strict standards set by environmental protection agencies. Written by an internationally acclaimed author team from government agencies, academia and industry, it details US, EU, Asia-Pacific and other international perspectives, regulations and guidelines.


Coal Fired Flue Gas Mercury Emission Controls

Coal Fired Flue Gas Mercury Emission Controls
Author: Jiang Wu
Publisher: Springer
Total Pages: 163
Release: 2015-03-17
Genre: Technology & Engineering
ISBN: 3662463474

Download Coal Fired Flue Gas Mercury Emission Controls Book in PDF, ePub and Kindle

Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations. Readers will arrive at a comprehensive understanding of various mercury emission control methods that are suitable for industrial applications. The book is intended for scientists, researchers, engineers and graduate students in the fields of energy science and technology, environmental science and technology and chemical engineering.