Measurement Of The Top Quark Mass In The Dilepton Channel PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Measurement Of The Top Quark Mass In The Dilepton Channel PDF full book. Access full book title Measurement Of The Top Quark Mass In The Dilepton Channel.

Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method

Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method
Author: Alexander Grohsjean
Publisher: Springer Science & Business Media
Total Pages: 155
Release: 2010-10-01
Genre: Science
ISBN: 364214070X

Download Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method Book in PDF, ePub and Kindle

The main pacemakers of scienti?c research are curiosity, ingenuity, and a pinch of persistence. Equipped with these characteristics a young researcher will be s- cessful in pushing scienti?c discoveries. And there is still a lot to discover and to understand. In the course of understanding the origin and structure of matter it is now known that all matter is made up of six types of quarks. Each of these carry a different mass. But neither are the particular mass values understood nor is it known why elementary particles carry mass at all. One could perhaps accept some small generic mass value for every quark, but nature has decided differently. Two quarks are extremely light, three more have a somewhat typical mass value, but one quark is extremely massive. It is the top quark, the heaviest quark and even the heaviest elementary particle that we know, carrying a mass as large as the mass of three iron nuclei. Even though there exists no explanation of why different particle types carry certain masses, the internal consistency of the currently best theory—the standard model of particle physics—yields a relation between the masses of the top quark, the so-called W boson, and the yet unobserved Higgs particle. Therefore, when one assumes validity of the model, it is even possible to take precise measurements of the top quark mass to predict the mass of the Higgs (and potentially other yet unobserved) particles.


Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method

Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method
Author:
Publisher:
Total Pages: 153
Release: 2008
Genre:
ISBN:

Download Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method Book in PDF, ePub and Kindle

The top quark, discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron Collider, is the heaviest known fundamental particle. The precise knowledge of its mass yields important constraints on the mass of the yet-unobserved Higgs boson and allows to probe for physics beyond the Standard Model. The first measurement of the top quark mass in the dilepton channel with the Matrix Element method at the D0 experiment is presented. After a short description of the experimental environment and the reconstruction chain from hits in the detector to physical objects, a detailed review of the Matrix Element method is given. The Matrix Element method is based on the likelihood to observe a given event under the assumption of the quantity to be measured, e.g. the mass of the top quark. The method has undergone significant modifications and improvements compared to previous measurements in the lepton+jets channel: the two undetected neutrinos require a new reconstruction scheme for the four-momenta of the final state particles, the small event sample demands the modeling of additional jets in the signal likelihood, and a new likelihood is designed to account for the main source of background containing tauonic Z decay. The Matrix Element method is validated on Monte Carlo simulated events at the generator level. For the measurement, calibration curves are derived from events that are run through the full D0 detector simulation. The analysis makes use of the Run II data set recorded between April 2002 and May 2008 corresponding to an integrated luminosity of 2.8 fb−1. A total of 107 t{bar t} candidate events with one electron and one muon in the final state are selected. Applying the Matrix Element method to this data set, the top quark mass is measured to be m{sub top}{sup Run IIa} = 170.6 ± 6.1(stat.){sub -1.5}{sup +2.1}(syst.)GeV; m{sub top}{sup Run IIb} = 174.1 ± 4.4(stat.){sub -1.8}{sup +2.5}(syst.)GeV; m{sub top}{sup comb} = 172.9 ± 3.6(stat.) ± 2.3(syst.)GeV. Systematic uncertainties are discussed, and the results are interpreted within the Standard Model of particle physics. As the main systematic uncertainty on the top quark mass comes from the knowledge of the absolute jet energy scale, studies for a simultaneous measurement of the top quark mass and the b jet energy scale are presented. The prospects that such a simultaneous determination offer for future measurements of the top quark mass are outlined.


Measurement of the Top Quark Mass in the Dilepton Channel at CDF and

Measurement of the Top Quark Mass in the Dilepton Channel at CDF and
Author: Tuula Maki
Publisher:
Total Pages: 3
Release: 2005
Genre:
ISBN:

Download Measurement of the Top Quark Mass in the Dilepton Channel at CDF and Book in PDF, ePub and Kindle

We present recent analyses of the top quark mass measurement in dileptonic channel. The measurements use 200-360 pb{sup -1} of data collected by CDF and D0 experiments. The future prospects are discussed as well.


Precision Measurement of Top Quark Mass in Dilepton Channel

Precision Measurement of Top Quark Mass in Dilepton Channel
Author: Bodhitha Jayatilaka
Publisher:
Total Pages: 9
Release: 2006
Genre:
ISBN:

Download Precision Measurement of Top Quark Mass in Dilepton Channel Book in PDF, ePub and Kindle

We present recent measurements of the top quark mass using events collected at the CDF and D0 detectors from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron. These analyses are performed using events consistent with the decay channel t{bar t} {yields} {bar b}{ell}{sup -}{bar v}{sub {ell}}b{ell}' + v'{sub {ell}}, or the dilepton channel. 230-360 pb{sup -1} of data are used.


Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels

Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels
Author:
Publisher:
Total Pages: 180
Release: 2008
Genre:
ISBN:

Download Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels Book in PDF, ePub and Kindle

The authors present the first measurement of the top quark mass using simultaneously data from two decay channels. They use a data sample of (square root)s = 1.96 TeV collisions with integrated luminosity of 1.9 fb−1 collected by the CDF II detector. They select dilepton and lepton + jets channel decays of t{bar t} pairs and reconstruct two observables in each topology. They use non-parametric techniques to derive probability density functions from simulated signal and background samples. The observables are the reconstructed top quark mass and the scalar sum of transverse energy of the event in the dilepton topology and the reconstructed top quark mass and the invariant mass of jets from the W boson decay in lepton + jets channel. They perform a simultaneous fit for the top quark mass and the jet energy scale which is constrained in situ by the hadronic W boson resonance from the lepton + jets channel. Using 144 dilepton candidate events and 332 lepton + jets candidate events they measure: M{sub top} = 171.9 ± 1.7 (stat. + JES) ± 1.1 (other sys.) GeV/c2 = 171.9 ± 2.0 GeV/c2. The measurement features a robust treatment of the systematic uncertainties, correlated between the two channels and develops techniques for a future top quark mass measurement simultaneously in all decay channels. Measurements of the W boson mass and the top quark mass provide a constraint on the mass of the yet unobserved Higgs boson. The Higgs boson mass implied by measurement presented here is higher than Higgs boson mass implied by previously published, most precise CDF measurements of the top quark mass in lepton + jets and dilepton channels separately.


Measurement of the Top Quark Mass in Dilepton Final States with the Neutrino Weighting Method

Measurement of the Top Quark Mass in Dilepton Final States with the Neutrino Weighting Method
Author:
Publisher:
Total Pages: 224
Release: 2012
Genre:
ISBN:

Download Measurement of the Top Quark Mass in Dilepton Final States with the Neutrino Weighting Method Book in PDF, ePub and Kindle

The top quark is the heaviest fundamental particle observed to date. The mass of the top quark is a free parameter in the Standard Model (SM). A precise measurement of its mass is particularly important as it sets an indirect constraint on the mass of the Higgs boson. It is also a useful constraint on contributions from physics beyond the SM and may play a fundamental role in the electroweak symmetry breaking mechanism. I present a measurement of the top quark mass in the dilepton channel using the Neutrino Weighting Method. The data sample corresponds to an integrated luminosity of 4.3 fb-1 of p$\bar{p}$ collisions at Tevatron with √s = 1.96 TeV, collected with the DØ detector. Kinematically under-constrained dilepton events are analyzed by integrating over neutrino rapidity. Weight distributions of t$\bar{t}$ signal and background are produced as a function of the top quark mass for different top quark mass hypotheses. The measurement is performed by constructing templates from the moments of the weight distributions and input top quark mass, followed by a subsequent likelihood t to data. The dominant systematic uncertainties from jet energy calibration is reduced by using a correction from `+jets channel. To replicate the quark avor dependence of the jet response in data, jets in the simulated events are additionally corrected. The result is combined with our preceding measurement on 1 fb-1 and yields mt = 174.0± 2.4 (stat.) ±1.4 (syst.) GeV.


Measurement of the Top Quark Mass in the Dilepton Channel

Measurement of the Top Quark Mass in the Dilepton Channel
Author:
Publisher:
Total Pages: 7
Release: 2006
Genre:
ISBN:

Download Measurement of the Top Quark Mass in the Dilepton Channel Book in PDF, ePub and Kindle

We present a measurement of the top quark mass in the dilepton channel based on approximately 370 pb−1 of data collected by the D0 experiment during Run II of the Fermilab Tevatron collider. We employ two different methods to extract the top quark mass. We show that both methods yield consistent results using ensemble tests of events generated with the D0 Monte Carlo simulation. We combine the results from the two methods to obtain a top quark mass m{sub t} = 178.1 ± 8.2 GeV. The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV.


The First Measurement of the Top Quark Mass at CDF II in the Lepton+jets and Dilepton Channels Simultaneously

The First Measurement of the Top Quark Mass at CDF II in the Lepton+jets and Dilepton Channels Simultaneously
Author:
Publisher:
Total Pages: 24
Release: 2008
Genre:
ISBN:

Download The First Measurement of the Top Quark Mass at CDF II in the Lepton+jets and Dilepton Channels Simultaneously Book in PDF, ePub and Kindle

The authors present a measurement of the mass of the top quark using data corresponding to an integrated luminosity of 1.9 fb−1 of p{bar p} collisions collected at (square root)s = 1.96 TeV with the CDF II detector at Fermilab's Tevatron. This is the first measurement of the top quark mass using top-antitop pair candidate events in the lepton + jets and dilepton decay channels simultaneously. They reconstruct two observables in each channel and use a non-parametric kernel density estimation technique to derive two-dimensional probability density functions from simulated signal and background samples. The observables are the top quark mass and the invariant mass of two jets from the W decay in the lepton + jets channel, and the top quark mass and the scalar sum of transverse energy of the event in the diletpon channel. They perform a simultaneous fit for the top quark mass and the jet energy scale, which is constrained in situ by the hadronic W boson mass. using 332 lepton + jets candidate events and 144 diletpon candidate events, they measure the top quark mass to be m{sub top} = 171.9 ± 1.7 (stat. + JES) ± 1.1 (other sys.) GeV/c2 = 171.9 ± 2.0 GeV/c2.