Measurement Of Cross Section Of Quark Pair Production Top With The D0 Experiment At The Tevatron And Determination The Top Quark Mass Using This Measure PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Measurement Of Cross Section Of Quark Pair Production Top With The D0 Experiment At The Tevatron And Determination The Top Quark Mass Using This Measure PDF full book. Access full book title Measurement Of Cross Section Of Quark Pair Production Top With The D0 Experiment At The Tevatron And Determination The Top Quark Mass Using This Measure.

Measurement of Cross Section of Quark Pair Production Top with the D0 Experiment at the Tevatron and Determination the Top Quark Mass Using this Measure

Measurement of Cross Section of Quark Pair Production Top with the D0 Experiment at the Tevatron and Determination the Top Quark Mass Using this Measure
Author:
Publisher:
Total Pages: 233
Release: 2010
Genre:
ISBN:

Download Measurement of Cross Section of Quark Pair Production Top with the D0 Experiment at the Tevatron and Determination the Top Quark Mass Using this Measure Book in PDF, ePub and Kindle

The top quark has been discovered by CDF and D0 experiments in 1995 at the proton-antiproton collider Tevatron. The amount of data recorded by both experiments makes it possible to accurately study the properties of this quark: its mass is now known to better than 1% accuracy. This thesis describes the measurement of the top pair cross section in the electron muon channel with 4, 3 fb−1 recorded data between 2006 and 2009 by the D0 experiment. Since the final state included a muon, improvements of some aspects of its identification have been performed : a study of the contamination of the cosmic muons and a study of the quality of the muon tracks. The cross section measurement is in good agreement with the theoretical calculations and the other experimental measurements. This measurement has been used to extract a value for the top quark mass. This method allows for the extraction of a better defined top mass than direct measurements as it depends less on Monte Carlo simulations. The uncertainty on this extracted mass, dominated by the experimental one, is however larger than for direct measurements. In order to decrease this uncertainty, the ratio of the Z boson and the top pair production cross sections has been studied to look for some possible theoretical correlations. At the Tevatron, the two cross sections are not theoretically correlated: no decrease of the uncertainty on the extracted top mass is therefore possible.


Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass

Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass
Author: Jan Kieseler
Publisher: Springer
Total Pages: 172
Release: 2016-06-15
Genre: Science
ISBN: 3319400053

Download Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass Book in PDF, ePub and Kindle

This thesis presents the first experimental calibration of the top-quark Monte-Carlo mass. It also provides the top-quark mass-independent and most precise top-quark pair production cross-section measurement to date. The most precise measurements of the top-quark mass obtain the top-quark mass parameter (Monte-Carlo mass) used in simulations, which are partially based on heuristic models. Its interpretation in terms of mass parameters used in theoretical calculations, e.g. a running or a pole mass, has been a long-standing open problem with far-reaching implications beyond particle physics, even affecting conclusions on the stability of the vacuum state of our universe. In this thesis, this problem is solved experimentally in three steps using data obtained with the compact muon solenoid (CMS) detector. The most precise top-quark pair production cross-section measurements to date are performed. The Monte-Carlo mass is determined and a new method for extracting the top-quark mass from theoretical calculations is presented. Lastly, the top-quark production cross-sections are obtained – for the first time – without residual dependence on the top-quark mass, are interpreted using theoretical calculations to determine the top-quark running- and pole mass with unprecedented precision, and are fully consistently compared with the simultaneously obtained top-quark Monte-Carlo mass.


Top Quark Pair Production

Top Quark Pair Production
Author: Anna Christine Henrichs
Publisher: Springer Science & Business Media
Total Pages: 231
Release: 2013-10-04
Genre: Science
ISBN: 3319014870

Download Top Quark Pair Production Book in PDF, ePub and Kindle

Before any kind of new physics discovery could be made at the LHC, a precise understanding and measurement of the Standard Model of particle physics' processes was necessary. The book provides an introduction to top quark production in the context of the Standard Model and presents two such precise measurements of the production of top quark pairs in proton-proton collisions at a center-of-mass energy of 7 TeV that were observed with the ATLAS Experiment at the LHC. The presented measurements focus on events with one charged lepton, missing transverse energy and jets. Using novel and advanced analysis techniques as well as a good understanding of the detector, they constitute the most precise measurements of the quantity at that time.


High Energy Physics

High Energy Physics
Author:
Publisher: World Scientific
Total Pages: 81
Release: 1981
Genre:
ISBN: 981447651X

Download High Energy Physics Book in PDF, ePub and Kindle


Precision Measurements of the Top Quark Mass and Width with the D0 Detector

Precision Measurements of the Top Quark Mass and Width with the D0 Detector
Author:
Publisher:
Total Pages: 6
Release: 2010
Genre:
ISBN:

Download Precision Measurements of the Top Quark Mass and Width with the D0 Detector Book in PDF, ePub and Kindle

Since the discovery of the top quark in 1995 at the Fermliab Tevatron Collider, top quark properties have been measured with ever higher precision. In this article, recent measurements of the top quark mass and its width using up to 3.6 fb−1 of D0 data are summarized. Different techniques and final states have been examined and no deviations within these measurements have been observed. In addition to the direct measurements, a measurement of the top quark mass from its production cross section and a measurement of the top-antitop quark mass difference are discussed. With a mass of 173.3 ± 1.1 GeV, the top quark is the heaviest of all known fundamental particles. Due to the high mass, its Yukawa coupling is close to unity suggesting that it may play a special role in electroweak symmetry breaking. Precise measurements of both, the W boson and the top quark mass, constrain the mass of the yet unobserved Higgs boson and allow to restrict certain extensions of the Standard Model. At the Tevatron collider with a center-of-mass energy of 1.96 TeV, 85% of the top quark pairs are produced in quark-antiquark annihilation; 15% originate from gluon fusion. Top quarks are predicted to decay almost exclusively to a W boson and a bottom quark. According to the number of hadronic W decays, top events are classified into all-jets, lepton+jets and dilepton events. The lepton+jets channel is characterized by four jets, one isolated, energetic charged lepton and missing transverse energy. With 30%, the branching fraction of the lepton+jets channel is about seven times larger than the one of the dilepton channel whereas the signal to background ratio is about three times smaller. The main background in this final state comes from W +jets events. Instrumental background arises from events in which a jet is misidentified as an electron and events with heavy hadrons that decay into leptons which pass the isolation requirements. The topology of the dilepton channel is described by two jets, two isolated, energetic charged leptons and significant missing transverse energy from the undetected neutrinos. The main background are Z + jets and diboson events (WW/WZ/ZZ+jets) as well as instrumental background as characterized above. At the D0 experiment, different techniques are used to measure the top quark mass. They are summarized in the following sections together with the first measurement of the top anti-top quark mass difference and the first precise determination of the top quark width.


Physics of the Top Quark at D0 New Measurement of the Production Cross Section and Mass

Physics of the Top Quark at D0 New Measurement of the Production Cross Section and Mass
Author:
Publisher:
Total Pages: 20
Release: 1997
Genre:
ISBN:

Download Physics of the Top Quark at D0 New Measurement of the Production Cross Section and Mass Book in PDF, ePub and Kindle

We present a measurement of the t{anti t} production cross section in p{anti p} collisions at √s = 1.8 TeV and a measurement of top quark mass m{sub t} by the D0 experiment at the Fermilab Tevatron. The measurements are based on the data from the 1992- 1996 run during which the D0 detector was exposed to the integrated luminosity of approximately 125 pb−1. We observe 39 t{anti t} candidate events in the dilepton and lepton+jets decay channels with an expected background of 13.7 ± 2.2 events. We measure the top quark mass m{sub t} using a two constraint fit to m{sub t} in t{anti t} → bW {anti b}W− final states with one W decaying to q{anti q} and the other to e? or??. Events are binned in the fit mass versus a measure of probability for events to be the signal rather than a background. Likelihood fits to the data yield m{sub t} = 173.3 ± 5.6 (stat) ± 6.2 (syst) GeV/c2. For this mass we measure the t{anti t} production cross section to be 5.5 ± 1.8 pb.


High Energy Physics

High Energy Physics
Author: Hesheng Chen
Publisher: World Scientific
Total Pages: 1424
Release: 2005-05-03
Genre: Science
ISBN: 9814481270

Download High Energy Physics Book in PDF, ePub and Kindle

The 32nd International Conference on High Energy Physics belongs to the Rochester Conference Series, and is the most important international conference in 2004 on high energy physics. The proceedings provide a comprehensive review on the recent developments in experimental and theoretical particle physics. The latest results on Top, Higgs search, CP violation, neutrino mixing, pentaquarks, heavy quark mesons and baryons, search for new particles and new phenomena, String theory, Extra dimension, Black hole and Lattice calculation are discussed extensively. The topics covered include not only those of main interest to the high energy physics community, but also recent research and future plans. Contents: Neutrino Masses and MixingsQuark Matter and Heavy Ion CollisionsParticle Astrophysics and CosmologyElectroweak PhysicsQCD Hard InteractionsQCD Soft InteractionsComputational Quantum Field TheoryCP Violation, Rare Kaon Decay and CKMR&D for Future Accelerator and DetectorHadron Spectroscopy and ExoticsHeavy Quark Mesons and BaryonsBeyond the Standard ModelString Theory Readership: Experimental and theoretical physicists and graduate students in the fields of particle physics, nuclear physics, astrophysics and cosmology.Keywords:High Energy Physics;Particle Physics;Electroweak;QCD;Heavy Quark;Neutrino;Particle Astrophysics;Hadron Spectroscopy;CP Violation;Quark Matter;Future Accelerator


'97 Electroweak Interactions and Unified Theories

'97 Electroweak Interactions and Unified Theories
Author: J. Thanh Van Tran
Publisher: Atlantica Séguier Frontières
Total Pages: 604
Release: 1997
Genre: Electroweak interactions
ISBN: 9782863322239

Download '97 Electroweak Interactions and Unified Theories Book in PDF, ePub and Kindle


Particle Physics at the Year of Astronomy

Particle Physics at the Year of Astronomy
Author: A. I. Studenikin
Publisher: World Scientific
Total Pages: 472
Release: 2011
Genre: Science
ISBN: 9814329681

Download Particle Physics at the Year of Astronomy Book in PDF, ePub and Kindle

These proceedings are devoted to a wide variety of both theoretical and experimental areas in particle physics. The topics include physics at accelerators and studies of Standard Model and Beyond, neutrino and astroparticle physics, cosmology, CP Violation and rare decays, hadron physics, and new developments in quantum field theory. The papers of the volume reveal the present status and new development in the above mentioned items. In particular, the first results on measurement of LHC pp collision events are also reported.


CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination

CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination
Author: Simon Spannagel
Publisher: Springer
Total Pages: 286
Release: 2017-08-01
Genre: Science
ISBN: 331958880X

Download CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination Book in PDF, ePub and Kindle

This thesis addresses two different topics, both vital for implementing modern high-energy physics experiments: detector development and data analysis. Providing a concise introduction to both the standard model of particle physics and the basic principles of semiconductor tracking detectors, it presents the first measurement of the top quark pole mass from the differential cross-section of tt+J events in the dileptonic tt decay channel. The first part focuses on the development and characterization of silicon pixel detectors. To account for the expected increase in luminosity of the Large Hadron Collider (LHC), the pixel detector of the compact muon solenoid (CMS) experiment is replaced by an upgraded detector with new front-end electronics. It presents comprehensive test beam studies conducted to verify the design and quantify the performance of the new front-end in terms of tracking efficiency and spatial resolution. Furthermore, it proposes a new cluster interpolation method, which utilizes the third central moment of the cluster charge distribution to improve the position resolution. The second part of the thesis introduces an alternative measurement of the top quark mass from the normalized differential production cross-sections of dileptonic top quark pair events with an additional jet. The energy measurement is 8TeV. Using theoretical predictions at next-to-leading order in perturbative Quantum Chromodynamics (QCD), the top quark pole mass is determined using a template fit method.