Mathematical Theory Of Transport Processes In Gases PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematical Theory Of Transport Processes In Gases PDF full book. Access full book title Mathematical Theory Of Transport Processes In Gases.

An Introduction to the Boltzmann Equation and Transport Processes in Gases

An Introduction to the Boltzmann Equation and Transport Processes in Gases
Author: Gilberto M. Kremer
Publisher: Springer Science & Business Media
Total Pages: 313
Release: 2010-08-18
Genre: Technology & Engineering
ISBN: 3642116965

Download An Introduction to the Boltzmann Equation and Transport Processes in Gases Book in PDF, ePub and Kindle

This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.


The Mathematical Theory of Non-uniform Gases

The Mathematical Theory of Non-uniform Gases
Author: Sydney Chapman
Publisher: Cambridge University Press
Total Pages: 452
Release: 1990
Genre: Mathematics
ISBN: 9780521408448

Download The Mathematical Theory of Non-uniform Gases Book in PDF, ePub and Kindle

This classic book, now reissued in paperback, presents a detailed account of the mathematical theory of viscosity, thermal conduction, and diffusion in non-uniform gases based on the solution of the Maxwell-Boltzmann equations. The theory of Chapman and Enskog, describing work on dense gases, quantum theory of collisions, and the theory of conduction and diffusion in ionized gases in the presence of electric and magnetic fields is also included in the later chapters. This reprint of the third edition, first published in 1970, includes revisions that take account of extensions of the theory to fresh molecular models and of new methods used in discussing dense gases and plasmas.


Transport Theory

Transport Theory
Author: Richard Bellman
Publisher: American Mathematical Soc.
Total Pages: 340
Release: 1969
Genre: Mathematics
ISBN: 9780821813201

Download Transport Theory Book in PDF, ePub and Kindle

The industrial and military applications of atomic energy have stimulated much mathematical research in neutron transport theory. The possibility of controlled thermonuclear processes has similarly focussed attention upon plasmas, sometimes called the "fourth state of matter". Independently, many classical aspects of kinetic theory and radiative transfer theory have been studied both because of their basic mathematical interest and of their physical applications to areas such as upper-atmosphere meteorology - introduction.


Kinetic Theory

Kinetic Theory
Author: S. G. Brush
Publisher: Elsevier
Total Pages: 294
Release: 2013-10-22
Genre: Science
ISBN: 1483145859

Download Kinetic Theory Book in PDF, ePub and Kindle

Kinetic Theory, Volume 3: The Chapman-Enskog Solution of the Transport Equation for Moderately Dense Gases describes the Chapman-Enskog solution of the transport equation for moderately dense gases. Topics covered range from the propagation of sound in monatomic gases to the kinetic theory of simple and composite monatomic gases and generalizations of the theory to higher densities. The application of kinetic theory to the determination of intermolecular forces is also discussed. This volume is divided into two sections and begins with an introduction to the work of Hilbert, Chapman, and Enskog that led to the formulation of the Chapman-Enskog theory. The Chapman-Enskog results are then compared with those of earlier theories with respect to viscosity, heat conduction, diffusion, and thermal diffusion. Subsequent chapters focus on alternatives to the Chapman-Enskog method and some mathematical problems; foundations of the kinetic theory of gases; and kinetic theory of processes in dilute gases and of heat conduction, viscosity, and self-diffusion in compressed gases and liquids. This book should be of interest to graduate students and others undertaking research in kinetic theory.


The Mathematical Theory of Dilute Gases

The Mathematical Theory of Dilute Gases
Author: Carlo Cercignani
Publisher: Springer Science & Business Media
Total Pages: 357
Release: 2013-12-01
Genre: Science
ISBN: 1441985247

Download The Mathematical Theory of Dilute Gases Book in PDF, ePub and Kindle

The idea for this book was conceived by the authors some time in 1988, and a first outline of the manuscript was drawn up during a summer school on mathematical physics held in Ravello in September 1988, where all three of us were present as lecturers or organizers. The project was in some sense inherited from our friend Marvin Shinbrot, who had planned a book about recent progress for the Boltzmann equation, but, due to his untimely death in 1987, never got to do it. When we drew up the first outline, we could not anticipate how long the actual writing would stretch out. Our ambitions were high: We wanted to cover the modern mathematical theory of the Boltzmann equation, with rigorous proofs, in a complete and readable volume. As the years progressed, we withdrew to some degree from this first ambition- there was just too much material, too scattered, sometimes incomplete, sometimes not rigor ous enough. However, in the writing process itself, the need for the book became ever more apparent. The last twenty years have seen an amazing number of significant results in the field, many of them published in incom plete form, sometimes in obscure places, and sometimes without technical details. We made it our objective to collect these results, classify them, and present them as best we could. The choice of topics remains, of course, subjective.


Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows

Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows
Author: V.V. Aristov
Publisher: Springer Science & Business Media
Total Pages: 305
Release: 2012-12-06
Genre: Science
ISBN: 9401008663

Download Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows Book in PDF, ePub and Kindle

This book is concerned with the methods of solving the nonlinear Boltz mann equation and of investigating its possibilities for describing some aerodynamic and physical problems. This monograph is a sequel to the book 'Numerical direct solutions of the kinetic Boltzmann equation' (in Russian) which was written with F. G. Tcheremissine and published by the Computing Center of the Russian Academy of Sciences some years ago. The main purposes of these two books are almost similar, namely, the study of nonequilibrium gas flows on the basis of direct integration of the kinetic equations. Nevertheless, there are some new aspects in the way this topic is treated in the present monograph. In particular, attention is paid to the advantages of the Boltzmann equation as a tool for considering nonequi librium, nonlinear processes. New fields of application of the Boltzmann equation are also described. Solutions of some problems are obtained with higher accuracy. Numerical procedures, such as parallel computing, are in vestigated for the first time. The structure and the contents of the present book have some com mon features with the monograph mentioned above, although there are new issues concerning the mathematical apparatus developed so that the Boltzmann equation can be applied for new physical problems. Because of this some chapters have been rewritten and checked again and some new chapters have been added.


Macroscopic Transport Equations for Rarefied Gas Flows

Macroscopic Transport Equations for Rarefied Gas Flows
Author: Henning Struchtrup
Publisher: Springer Science & Business Media
Total Pages: 262
Release: 2006-06-15
Genre: Science
ISBN: 3540323864

Download Macroscopic Transport Equations for Rarefied Gas Flows Book in PDF, ePub and Kindle

The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough. Thus, the proper simulation of flows in rarefied gases requires a more detailed description. This book discusses classical and modern methods to derive macroscopic transport equations for rarefied gases from the Boltzmann equation, for small and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier level. The main methods discussed are the classical Chapman-Enskog and Grad approaches, as well as the new order of magnitude method, which avoids the short-comings of the classical methods, but retains their benefits. The relations between the various methods are carefully examined, and the resulting equations are compared and tested for a variety of standard problems. The book develops the topic starting from the basic description of an ideal gas, over the derivation of the Boltzmann equation, towards the various methods for deriving macroscopic transport equations, and the test problems which include stability of the equations, shock waves, and Couette flow.