Mathematical Models Volume Ii PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematical Models Volume Ii PDF full book. Access full book title Mathematical Models Volume Ii.

MATHEMATICAL MODELS – Volume II

MATHEMATICAL MODELS – Volume II
Author: Jerzy A. Filar
Publisher: EOLSS Publications
Total Pages: 510
Release: 2009-09-19
Genre: Mathematical models
ISBN: 1848262434

Download MATHEMATICAL MODELS – Volume II Book in PDF, ePub and Kindle

Mathematical Models is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Mathematical Models discusses matters of great relevance to our world such as: Basic Principles of Mathematical Modeling; Mathematical Models in Water Sciences; Mathematical Models in Energy Sciences; Mathematical Models of Climate and Global Change; Infiltration and Ponding; Mathematical Models of Biology; Mathematical Models in Medicine and Public Health; Mathematical Models of Society and Development. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.


Mathematical Biology II

Mathematical Biology II
Author: James D. Murray
Publisher: Springer Science & Business Media
Total Pages: 834
Release: 2011-02-15
Genre: Mathematics
ISBN: 0387952284

Download Mathematical Biology II Book in PDF, ePub and Kindle

This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS


Mathematical Models in the Biosciences II

Mathematical Models in the Biosciences II
Author: Michael Frame
Publisher: Yale University Press
Total Pages: 493
Release: 2021-10-12
Genre: Science
ISBN: 0300263791

Download Mathematical Models in the Biosciences II Book in PDF, ePub and Kindle

Volume Two of an award-winning professor’s introduction to essential concepts of calculus and mathematical modeling for students in the biosciences This is the second of a two-part series exploring essential concepts of calculus in the context of biological systems. Building on the essential ideas and theories of basic calculus taught in Mathematical Models in the Biosciences I, this book focuses on epidemiological models, mathematical foundations of virus and antiviral dynamics, ion channel models and cardiac arrhythmias, vector calculus and applications, and evolutionary models of disease. It also develops differential equations and stochastic models of many biomedical processes, as well as virus dynamics, the Clancy-Rudy model to determine the genetic basis of cardiac arrhythmias, and a sketch of some systems biology. Based on the author’s calculus class at Yale, the book makes concepts of calculus less abstract and more relatable for science majors and premedical students.


An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling
Author: Edward A. Bender
Publisher: Courier Corporation
Total Pages: 273
Release: 2012-05-23
Genre: Mathematics
ISBN: 0486137120

Download An Introduction to Mathematical Modeling Book in PDF, ePub and Kindle

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.


Guide to Mathematical Modelling

Guide to Mathematical Modelling
Author: David A Towers
Publisher: Bloomsbury Publishing
Total Pages: 326
Release: 2020-06-06
Genre: Mathematics
ISBN: 1352011271

Download Guide to Mathematical Modelling Book in PDF, ePub and Kindle

A basic introduction to Mathematical Modelling, this book encourages the reader to participate in the investigation of a wide variety of modelling examples. These are carefully paced so that the readers can identify and develop the skills which are required for successful modelling. The examples also promote an appreciation of the enormous range of problems to which mathematical modelling skills can be usefully applied.


Mathematical Models in Population Biology and Epidemiology

Mathematical Models in Population Biology and Epidemiology
Author: Fred Brauer
Publisher: Springer Science & Business Media
Total Pages: 432
Release: 2013-03-09
Genre: Science
ISBN: 1475735162

Download Mathematical Models in Population Biology and Epidemiology Book in PDF, ePub and Kindle

The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.


Mathematical Modeling in Systems Biology

Mathematical Modeling in Systems Biology
Author: Brian P. Ingalls
Publisher: MIT Press
Total Pages: 423
Release: 2022-06-07
Genre: Science
ISBN: 0262545829

Download Mathematical Modeling in Systems Biology Book in PDF, ePub and Kindle

An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.


Mathematical Models in the Biosciences I

Mathematical Models in the Biosciences I
Author: Michael Frame
Publisher: Yale University Press
Total Pages: 542
Release: 2021-06-22
Genre: Mathematics
ISBN: 0300258429

Download Mathematical Models in the Biosciences I Book in PDF, ePub and Kindle

An award-winning professor’s introduction to essential concepts of calculus and mathematical modeling for students in the biosciences This is the first of a two-part series exploring essential concepts of calculus in the context of biological systems. Michael Frame covers essential ideas and theories of basic calculus and probability while providing examples of how they apply to subjects like chemotherapy and tumor growth, chemical diffusion, allometric scaling, predator-prey relations, and nerve impulses. Based on the author’s calculus class at Yale University, the book makes concepts of calculus more relatable for science majors and premedical students.


A Biologist's Guide to Mathematical Modeling in Ecology and Evolution

A Biologist's Guide to Mathematical Modeling in Ecology and Evolution
Author: Sarah P. Otto
Publisher: Princeton University Press
Total Pages: 745
Release: 2011-09-19
Genre: Science
ISBN: 1400840910

Download A Biologist's Guide to Mathematical Modeling in Ecology and Evolution Book in PDF, ePub and Kindle

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available


Mathematical Models in Biology

Mathematical Models in Biology
Author: Leah Edelstein-Keshet
Publisher: SIAM
Total Pages: 629
Release: 1988-01-01
Genre: Mathematics
ISBN: 9780898719147

Download Mathematical Models in Biology Book in PDF, ePub and Kindle

Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.