Mathematical Models And Numerical Simulation In Electromagnetism PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematical Models And Numerical Simulation In Electromagnetism PDF full book. Access full book title Mathematical Models And Numerical Simulation In Electromagnetism.

Mathematical Models and Numerical Simulation in Electromagnetism

Mathematical Models and Numerical Simulation in Electromagnetism
Author: Alfredo Bermúdez de Castro
Publisher: Springer
Total Pages: 440
Release: 2014-07-22
Genre: Mathematics
ISBN: 3319029495

Download Mathematical Models and Numerical Simulation in Electromagnetism Book in PDF, ePub and Kindle

The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.


Coupled Electromagnetic Field/Circuit Simulation. Modeling and Numerical Analysis

Coupled Electromagnetic Field/Circuit Simulation. Modeling and Numerical Analysis
Author: Sascha Baumanns
Publisher: Logos Verlag Berlin GmbH
Total Pages: 209
Release: 2012
Genre: Mathematics
ISBN: 3832531912

Download Coupled Electromagnetic Field/Circuit Simulation. Modeling and Numerical Analysis Book in PDF, ePub and Kindle

Today's most commonly used circuit models increasingly tend to lose their validity in circuit simulation due to rapid technological developments, miniaturization and increased complexity of integrated circuits. The starting point of this thesis was to tackle these challenges by refining the critical parts of the circuit by combining circuit simulation directly with distributed device models. The approach set out in this thesis couples partial differential equations for electromagnetic devices - modeled by Maxwell's equations -, to differential-algebraic equations, which describe basic circuit elements including memristors and the circuit's topology. First, Maxwell's equations are spatially discretized and a potential formulation is derived, the coupled system is then formulated as a differential-algebraic equation with a properly stated leading term and analyzed. Topological and modeling conditions are presented to guarantee the tractability index of these differential-algebraic equations to be no greater than two. Finally, local solvability, perturbation results and an algorithm to calculate consistent initializations are derived for a general class of differential-algebraic equations with a properly stated leading term having tractability index-2.


Complex Electromagnetic Problems and Numerical Simulation Approaches

Complex Electromagnetic Problems and Numerical Simulation Approaches
Author: Levent Sevgi
Publisher: John Wiley & Sons
Total Pages: 421
Release: 2003-06-10
Genre: Science
ISBN: 0471430625

Download Complex Electromagnetic Problems and Numerical Simulation Approaches Book in PDF, ePub and Kindle

Today, engineering problems are very complex, requiring powerful computer simulations to power them. For engineers, observable-based parameterization as well as numerically computable formsâ??with rapid convergent properties if in a seriesâ??are essential. Complex Electromagnetic Problems and Numerical Simulation Approaches, along with its companion FTP site, will show you how to take on complex electromagnetic problems and solve them in an accurate and efficient manner. Organized into two distinct parts, this comprehensive resource first introduces you to the concepts, approaches, and numerical simulation techniques that will be used throughout the book and then, in Part II, offers step-by-step guidance as to their practical, real-world applications. Self-contained chapters will enable you to find specific solutions to numerous problems. Filled with in-depth insight and expert advice, Complex Electromagnetic Problems and Numerical Simulation Approaches: Describes ground wave propagation Examines antenna systems Deals with radar cross section (RCS) modeling Explores microstrip network design with FDTD and TLM techniques Discusses electromagnetic compatibility (EMC) and bio-electromagnetics (BEM) modeling Presents radar simulation Whether you're a professional electromagnetic engineer requiring a consolidated overview of the subject or an academic/student who wishes to use powerful simulators as a learning tool, Complex Electromagnetic Problems and Numerical Simulation Approaches - with its focus on model development, model justification, and range of validity - is the right book for you.


Mathematical Modeling and Numerical Simulation in Continuum Mechanics

Mathematical Modeling and Numerical Simulation in Continuum Mechanics
Author: Ivo Babuska
Publisher: Springer Science & Business Media
Total Pages: 300
Release: 2012-12-06
Genre: Computers
ISBN: 3642562884

Download Mathematical Modeling and Numerical Simulation in Continuum Mechanics Book in PDF, ePub and Kindle

The first international symposium on mathematical foundations of the finite element method was held at the University of Maryland in 1973. During the last three decades there has been great progress in the theory and practice of solving partial differential equations, and research has extended in various directions. Full-scale nonlinear problems have come within the range of nu merical simulation. The importance of mathematical modeling and analysis in science and engineering is steadily increasing. In addition, new possibili ties of analysing the reliability of computations have appeared. Many other developments have occurred: these are only the most noteworthy. This book is the record of the proceedings of the International Sympo sium on Mathematical Modeling and Numerical Simulation in Continuum Mechanics, held in Yamaguchi, Japan from 29 September to 3 October 2000. The topics covered by the symposium ranged from solids to fluids, and in cluded both mathematical and computational analysis of phenomena and algorithms. Twenty-one invited talks were delivered at the symposium. This volume includes almost all of them, and expresses aspects of the progress mentioned above. All the papers were individually refereed. We hope that this volume will be a stepping-stone for further developments in this field.


Numerical Analysis for Electromagnetic Integral Equations

Numerical Analysis for Electromagnetic Integral Equations
Author: Karl F. Warnick
Publisher: Artech House
Total Pages: 234
Release: 2008
Genre: Mathematics
ISBN: 1596933348

Download Numerical Analysis for Electromagnetic Integral Equations Book in PDF, ePub and Kindle

Introduction -- Surface integral equation formulations and the method of moments -- Error analysis of the EFIE / with W.C. Chew -- Error analysis of the MFIE and CFIE / with C.P. Davis -- Geometrical singularities and the flat strip -- Resonant structures -- Error analysis for 3D problems -- Higher-order basis functions / with A.F. Peterson -- Operator spectra and iterative solution methods.


Industrial Electromagnetics Modelling

Industrial Electromagnetics Modelling
Author: J. Caldwell
Publisher: Springer Science & Business Media
Total Pages: 231
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9400969171

Download Industrial Electromagnetics Modelling Book in PDF, ePub and Kindle

During the past few years the rapid development of computer tech nology has made high power computing facilities more readily accessible to a greater proportion of our industrial and academic community. This development coupled with the recent upsurge in mathematical modelling and computer simulation has led to signif icant developments in electromagnetic field theory and its applic ations to industry. In view of such developments and the present high interest to both academics and industry the theme chosen for the Polymodel 6 Conference held at Newcastle upon Tyne in May 1983 was Industrial Electromagnetics Modelling. To date the North East Polytechnics Mathematical Modelling and Computer Simulation Group has organised five successful Polymodel. conferences each with a different theme. The objectives of the Polymodel group include the promotion of collaborative research between Newcastle, Sunderland and Teesside Polytechnics and industry in the areas of mathematical modelling and computer simulation. The aim of the Polymodel 6 Conference was to call on and use the modelling and computer.simulation expertise of eminent academics and industrialists who are deeply involved in the area of electro magnetics. These proceedings have a twofold purpose in that they contain current analytical and numerical techniques relevant to electromagnetic field problems and useful ideas on the modelling and simulation techniques which are most appropriate. It was also felt important to include implications. of. computer developments (both hardware and software) on such work.


Numerical Methods in Electromagnetics

Numerical Methods in Electromagnetics
Author: W.H.A. SCHILDERS
Publisher: Elsevier
Total Pages: 930
Release: 2005-04-04
Genre: Mathematics
ISBN: 0080459153

Download Numerical Methods in Electromagnetics Book in PDF, ePub and Kindle

This special volume provides a broad overview and insight in the way numerical methods are being used to solve the wide variety of problems in the electronics industry. Furthermore its aim is to give researchers from other fields of application the opportunity to benefit from the results wich have been obtained in the electronics industry. * Complete survey of numerical methods used in the electronic industry* Each chapter is selfcontained* Presents state-of-the-art applications and methods* Internationally recognised authors


Numerical Methods in Electromagnetism

Numerical Methods in Electromagnetism
Author: M. V.K. Chari
Publisher: Academic Press
Total Pages: 783
Release: 2000
Genre: Mathematics
ISBN: 012615760X

Download Numerical Methods in Electromagnetism Book in PDF, ePub and Kindle

Electromagnetics is the foundation of our electric technology. It describes the fundamental principles upon which electricity is generated and used. This includes electric machines, high voltage transmission, telecommunication, radar, and recording and digital computing. Numerical Methods in Electromagnetism will serve both as an introductory text for graduate students and as a reference book for professional engineers and researchers. This book leads the uninitiated into the realm of numerical methods for solving electromagnetic field problems by examples and illustrations. Detailed descriptions of advanced techniques are also included for the benefit of working engineers and research students. Comprehensive descriptions of numerical methods In-depth introduction to finite differences, finite elements, and integral equations Illustrations and applications of linear and nonlinear solutions for multi-dimensional analysis Numerical examples to facilitate understanding of the methods Appendices for quick reference of mathematical and numerical methods employed


Computational Electromagnetism

Computational Electromagnetism
Author: Alain Bossavit
Publisher: Academic Press
Total Pages: 352
Release: 1998-02-04
Genre: Technology & Engineering
ISBN: 9780080529660

Download Computational Electromagnetism Book in PDF, ePub and Kindle

Computational Electromagnetism refers to the modern concept of computer-aided analysis, and design, of virtually all electric devices such as motors, machines, transformers, etc., as well as of the equipment inthe currently booming field of telecommunications, such as antennas, radars, etc. The present book is uniquely written to enable the reader-- be it a student, a scientist, or a practitioner-- to successfully perform important simulation techniques and to design efficient computer software for electromagnetic device analysis. Numerous illustrations, solved exercises, original ideas, and an extensive and up-to-date bibliography make it a valuable reference for both experts and beginners in the field. A researcher and practitioner will find in it information rarely available in other sources, such as on symmetry, bilateral error bounds by complimentarity, edge and face elements, treatment of infinite domains, etc. At the same time, the book is a useful teaching tool for courses in computational techniques in certain fields of physics and electrical engineering. As a self-contained text, it presents an extensive coverage of the most important concepts from Maxwells equations to computer-solvable algebraic systems-- for both static, quasi-static, and harmonic high-frequency problems. Benefits To the Engineer A sound background necessary not only to understand the principles behind variational methods and finite elements, but also to design pertinent and well-structured software. To the Specialist in Numerical Modeling The book offers new perspectives of practical importance on classical issues: the underlying symmetry of Maxwell equations, their interaction with other fields of physics in real-life modeling, the benefits of edge and face elements, approaches to error analysis, and "complementarity." To the Teacher An expository strategy that will allow you to guide the student along a safe and easy route through otherwise difficult concepts: weak formulations and their relation to fundamental conservation principles of physics, functional spaces, Hilbert spaces, approximation principles, finite elements, and algorithms for solving linear systems. At a higher level, the book provides a concise and self-contained introduction to edge elements and their application to mathematical modeling of the basic electromagnetic phenomena, and static problems, such as eddy-current problems and microwaves in cavities. To the Student Solved exercises, with "hint" and "full solution" sections, will both test and enhance the understanding of the material. Numerous illustrations will help in grasping difficult mathematical concepts.


Numerical Electromagnetics

Numerical Electromagnetics
Author: Umran S. Inan
Publisher: Cambridge University Press
Total Pages: 405
Release: 2011-04-07
Genre: Science
ISBN: 1139497987

Download Numerical Electromagnetics Book in PDF, ePub and Kindle

Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.