Mathematical Foundations Of Computational Electromagnetism PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematical Foundations Of Computational Electromagnetism PDF full book. Access full book title Mathematical Foundations Of Computational Electromagnetism.

Mathematical Foundations of Computational Electromagnetism

Mathematical Foundations of Computational Electromagnetism
Author: Franck Assous
Publisher: Springer
Total Pages: 458
Release: 2018-06-09
Genre: Mathematics
ISBN: 3319708422

Download Mathematical Foundations of Computational Electromagnetism Book in PDF, ePub and Kindle

This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equations and boundary conditions are discussed, including a brief review of absorbing boundary conditions. The focus then moves to well‐posedness results. The relevant function spaces are introduced, with an emphasis on boundary and topological conditions. General variational frameworks are defined for static and quasi-static problems, time-harmonic problems (including fixed frequency or Helmholtz-like problems and unknown frequency or eigenvalue problems), and time-dependent problems, with or without constraints. They are then applied to prove the well-posedness of Maxwell’s equations and their simplified models, in the various settings described above. The book is completed with a discussion of dimensionally reduced models in prismatic and axisymmetric geometries, and a survey of existence and uniqueness results for the Vlasov-Poisson, Vlasov-Maxwell and MHD equations. The book addresses mainly researchers in applied mathematics who work on Maxwell’s equations. However, it can be used for master or doctorate-level courses on mathematical electromagnetism as it requires only a bachelor-level knowledge of analysis.


Mathematical Foundations for Electromagnetic Theory

Mathematical Foundations for Electromagnetic Theory
Author: Donald G. Dudley
Publisher: Wiley-IEEE Press
Total Pages: 264
Release: 1994-05-18
Genre: Science
ISBN: 9780780310223

Download Mathematical Foundations for Electromagnetic Theory Book in PDF, ePub and Kindle

Co-published with Oxford University Press. This highly technical and thought-provoking book stresses the development of mathematical foundations for the application of the electromagnetic model to problems of research and technology. Features include in-depth coverage of linear spaces, Green's functions, spectral expansions, electromagnetic source representations, and electromagnetic boundary value problems. This book will be of interest graduate-level students in engineering, electromagnetics, physics, and applied mathematics as well as to research engineers, physicists, and scientists.


Computational Electromagnetism

Computational Electromagnetism
Author: Alain Bossavit
Publisher: Academic Press
Total Pages: 352
Release: 1998-02-04
Genre: Technology & Engineering
ISBN: 9780080529660

Download Computational Electromagnetism Book in PDF, ePub and Kindle

Computational Electromagnetism refers to the modern concept of computer-aided analysis, and design, of virtually all electric devices such as motors, machines, transformers, etc., as well as of the equipment inthe currently booming field of telecommunications, such as antennas, radars, etc. The present book is uniquely written to enable the reader-- be it a student, a scientist, or a practitioner-- to successfully perform important simulation techniques and to design efficient computer software for electromagnetic device analysis. Numerous illustrations, solved exercises, original ideas, and an extensive and up-to-date bibliography make it a valuable reference for both experts and beginners in the field. A researcher and practitioner will find in it information rarely available in other sources, such as on symmetry, bilateral error bounds by complimentarity, edge and face elements, treatment of infinite domains, etc. At the same time, the book is a useful teaching tool for courses in computational techniques in certain fields of physics and electrical engineering. As a self-contained text, it presents an extensive coverage of the most important concepts from Maxwells equations to computer-solvable algebraic systems-- for both static, quasi-static, and harmonic high-frequency problems. Benefits To the Engineer A sound background necessary not only to understand the principles behind variational methods and finite elements, but also to design pertinent and well-structured software. To the Specialist in Numerical Modeling The book offers new perspectives of practical importance on classical issues: the underlying symmetry of Maxwell equations, their interaction with other fields of physics in real-life modeling, the benefits of edge and face elements, approaches to error analysis, and "complementarity." To the Teacher An expository strategy that will allow you to guide the student along a safe and easy route through otherwise difficult concepts: weak formulations and their relation to fundamental conservation principles of physics, functional spaces, Hilbert spaces, approximation principles, finite elements, and algorithms for solving linear systems. At a higher level, the book provides a concise and self-contained introduction to edge elements and their application to mathematical modeling of the basic electromagnetic phenomena, and static problems, such as eddy-current problems and microwaves in cavities. To the Student Solved exercises, with "hint" and "full solution" sections, will both test and enhance the understanding of the material. Numerous illustrations will help in grasping difficult mathematical concepts.


Computational Electromagnetism

Computational Electromagnetism
Author: Houssem Haddar
Publisher: Springer
Total Pages: 249
Release: 2015-07-20
Genre: Mathematics
ISBN: 3319193066

Download Computational Electromagnetism Book in PDF, ePub and Kindle

Presenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms. Based on four courses delivered in Cetraro in June 2014, the material covered includes the spatial discretization of Maxwell’s equations in a bounded domain, the numerical approximation of the eddy current model in harmonic regime, the time domain integral equation method (with an emphasis on the electric-field integral equation) and an overview of qualitative methods for inverse electromagnetic scattering problems. Assuming some knowledge of the variational formulation of PDEs and of finite element/boundary element methods, the book is suitable for PhD students and researchers interested in numerical approximation of partial differential equations and scientific computing.


Computational Electromagnetics

Computational Electromagnetics
Author: Anders Bondeson
Publisher: Springer Science & Business Media
Total Pages: 232
Release: 2006-02-07
Genre: Mathematics
ISBN: 0387261605

Download Computational Electromagnetics Book in PDF, ePub and Kindle

Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included


Computational Electromagnetics

Computational Electromagnetics
Author: Carsten Carstensen
Publisher: Springer Science & Business Media
Total Pages: 234
Release: 2003-02-13
Genre: Computers
ISBN: 9783540443926

Download Computational Electromagnetics Book in PDF, ePub and Kindle

The contributions in this book by leading international experts in the field of electromagnetic field computation cover a wide area of contemporary research activities. They clearly underline the important role of modeling, analysis and numerical methods to provide powerful tools for the simulation of electromagnetic phenomena. The main topics range from the mathematical analysis of Maxwell's equations including its proper spatial discretizations (edge elements, boundary element methods, finite integration), and efficient iterative solution techniques (multigrid, domain decomposition) to multiscale aspects in micromagnetics. The reader will get acquainted with many facets of modern computational techniques and its applications to relevant problems in electromagnetism.


Computational Electromagnetics

Computational Electromagnetics
Author: Thomas Rylander
Publisher: Springer Science & Business Media
Total Pages: 302
Release: 2012-11-06
Genre: Computers
ISBN: 1461453518

Download Computational Electromagnetics Book in PDF, ePub and Kindle

Computational Electromagnetics is a young and growing discipline, expanding as a result of the steadily increasing demand for software for the design and analysis of electrical devices. This book introduces three of the most popular numerical methods for simulating electromagnetic fields: the finite difference method, the finite element method and the method of moments. In particular it focuses on how these methods are used to obtain valid approximations to the solutions of Maxwell's equations, using, for example, "staggered grids" and "edge elements." The main goal of the book is to make the reader aware of different sources of errors in numerical computations, and also to provide the tools for assessing the accuracy of numerical methods and their solutions. To reach this goal, convergence analysis, extrapolation, von Neumann stability analysis, and dispersion analysis are introduced and used frequently throughout the book. Another major goal of the book is to provide students with enough practical understanding of the methods so they are able to write simple programs on their own. To achieve this, the book contains several MATLAB programs and detailed description of practical issues such as assembly of finite element matrices and handling of unstructured meshes. Finally, the book aims at making the students well-aware of the strengths and weaknesses of the different methods, so they can decide which method is best for each problem. In this second edition, extensive computer projects are added as well as new material throughout. Reviews of previous edition: "The well-written monograph is devoted to students at the undergraduate level, but is also useful for practising engineers." (Zentralblatt MATH, 2007)


Numerical Analysis for Electromagnetic Integral Equations

Numerical Analysis for Electromagnetic Integral Equations
Author: Karl F. Warnick
Publisher: Artech House
Total Pages: 234
Release: 2008
Genre: Mathematics
ISBN: 1596933348

Download Numerical Analysis for Electromagnetic Integral Equations Book in PDF, ePub and Kindle

Introduction -- Surface integral equation formulations and the method of moments -- Error analysis of the EFIE / with W.C. Chew -- Error analysis of the MFIE and CFIE / with C.P. Davis -- Geometrical singularities and the flat strip -- Resonant structures -- Error analysis for 3D problems -- Higher-order basis functions / with A.F. Peterson -- Operator spectra and iterative solution methods.


Computational Electromagnetics

Computational Electromagnetics
Author: Raj Mittra
Publisher: Springer Science & Business Media
Total Pages: 707
Release: 2013-08-20
Genre: Technology & Engineering
ISBN: 1461443822

Download Computational Electromagnetics Book in PDF, ePub and Kindle

Emerging Topics in Computational Electromagnetics in Computational Electromagnetics presents advances in Computational Electromagnetics. This book is designed to fill the existing gap in current CEM literature that only cover the conventional numerical techniques for solving traditional EM problems. The book examines new algorithms, and applications of these algorithms for solving problems of current interest that are not readily amenable to efficient treatment by using the existing techniques. The authors discuss solution techniques for problems arising in nanotechnology, bioEM, metamaterials, as well as multiscale problems. They present techniques that utilize recent advances in computer technology, such as parallel architectures, and the increasing need to solve large and complex problems in a time efficient manner by using highly scalable algorithms.


Computational Electromagnetics with MATLAB, Fourth Edition

Computational Electromagnetics with MATLAB, Fourth Edition
Author: Matthew N.O. Sadiku
Publisher: CRC Press
Total Pages: 687
Release: 2018-07-20
Genre: Technology & Engineering
ISBN: 1351365096

Download Computational Electromagnetics with MATLAB, Fourth Edition Book in PDF, ePub and Kindle

This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Includes new homework problems in each chapter. Each chapter is updated with the current trends in CEM. Adds a new appendix on CEM codes, which covers commercial and free codes. Provides updated MATLAB code.