Mathematical Analysis And Simulation Of Field Models In Accelerator Circuits PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematical Analysis And Simulation Of Field Models In Accelerator Circuits PDF full book. Access full book title Mathematical Analysis And Simulation Of Field Models In Accelerator Circuits.

Mathematical Analysis and Simulation of Field Models in Accelerator Circuits

Mathematical Analysis and Simulation of Field Models in Accelerator Circuits
Author: Idoia Cortes Garcia
Publisher: Springer Nature
Total Pages: 171
Release: 2021-01-04
Genre: Technology & Engineering
ISBN: 3030632733

Download Mathematical Analysis and Simulation of Field Models in Accelerator Circuits Book in PDF, ePub and Kindle

This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of “quenching”, i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts.


Design Methods for Reducing Failure Probabilities with Examples from Electrical Engineering

Design Methods for Reducing Failure Probabilities with Examples from Electrical Engineering
Author: Mona Fuhrländer
Publisher: Springer Nature
Total Pages: 168
Release: 2023-08-28
Genre: Technology & Engineering
ISBN: 3031370198

Download Design Methods for Reducing Failure Probabilities with Examples from Electrical Engineering Book in PDF, ePub and Kindle

This book deals with efficient estimation and optimization methods to improve the design of electrotechnical devices under uncertainty. Uncertainties caused by manufacturing imperfections, natural material variations, or unpredictable environmental influences, may lead, in turn, to deviations in operation. This book describes two novel methods for yield (or failure probability) estimation. Both are hybrid methods that combine the accuracy of Monte Carlo with the efficiency of surrogate models. The SC-Hybrid approach uses stochastic collocation and adjoint error indicators. The non-intrusive GPR-Hybrid approach consists of a Gaussian process regression that allows surrogate model updates on the fly. Furthermore, the book proposes an adaptive Newton-Monte-Carlo (Newton-MC) method for efficient yield optimization. In turn, to solve optimization problems with mixed gradient information, two novel Hermite-type optimization methods are described. All the proposed methods have been numerically evaluated on two benchmark problems, such as a rectangular waveguide and a permanent magnet synchronous machine. Results showed that the new methods can significantly reduce the computational effort of yield estimation, and of single- and multi-objective yield optimization under uncertainty. All in all, this book presents novel strategies for quantification of uncertainty and optimization under uncertainty, with practical details to improve the design of electrotechnical devices, yet the methods can be used for any design process affected by uncertainties.


Field Computation for Accelerator Magnets

Field Computation for Accelerator Magnets
Author: Stephan Russenschuck
Publisher: John Wiley & Sons
Total Pages: 778
Release: 2011-02-08
Genre: Science
ISBN: 3527635475

Download Field Computation for Accelerator Magnets Book in PDF, ePub and Kindle

Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.


Mathematical Modeling and Simulation

Mathematical Modeling and Simulation
Author: Kai Velten
Publisher: John Wiley & Sons
Total Pages: 362
Release: 2009-06-01
Genre: Science
ISBN: 3527627618

Download Mathematical Modeling and Simulation Book in PDF, ePub and Kindle

This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).


Parallel Sparse Direct Solver for Integrated Circuit Simulation

Parallel Sparse Direct Solver for Integrated Circuit Simulation
Author: Xiaoming Chen
Publisher: Springer
Total Pages: 137
Release: 2017-02-11
Genre: Technology & Engineering
ISBN: 3319534297

Download Parallel Sparse Direct Solver for Integrated Circuit Simulation Book in PDF, ePub and Kindle

This book describes algorithmic methods and parallelization techniques to design a parallel sparse direct solver which is specifically targeted at integrated circuit simulation problems. The authors describe a complete flow and detailed parallel algorithms of the sparse direct solver. They also show how to improve the performance by simple but effective numerical techniques. The sparse direct solver techniques described can be applied to any SPICE-like integrated circuit simulator and have been proven to be high-performance in actual circuit simulation. Readers will benefit from the state-of-the-art parallel integrated circuit simulation techniques described in this book, especially the latest parallel sparse matrix solution techniques.


Modeling and Simulation in Python

Modeling and Simulation in Python
Author: Allen B. Downey
Publisher: No Starch Press
Total Pages: 277
Release: 2023-05-30
Genre: Computers
ISBN: 1718502176

Download Modeling and Simulation in Python Book in PDF, ePub and Kindle

Modeling and Simulation in Python teaches readers how to analyze real-world scenarios using the Python programming language, requiring no more than a background in high school math. Modeling and Simulation in Python is a thorough but easy-to-follow introduction to physical modeling—that is, the art of describing and simulating real-world systems. Readers are guided through modeling things like world population growth, infectious disease, bungee jumping, baseball flight trajectories, celestial mechanics, and more while simultaneously developing a strong understanding of fundamental programming concepts like loops, vectors, and functions. Clear and concise, with a focus on learning by doing, the author spares the reader abstract, theoretical complexities and gets right to hands-on examples that show how to produce useful models and simulations.


Technical Abstract Bulletin

Technical Abstract Bulletin
Author: Defense Documentation Center (U.S.)
Publisher:
Total Pages: 1032
Release: 1963
Genre: Science
ISBN:

Download Technical Abstract Bulletin Book in PDF, ePub and Kindle