Materials Science And Fuel Technologies Of Uranium And Plutonium Mixed Oxide PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Materials Science And Fuel Technologies Of Uranium And Plutonium Mixed Oxide PDF full book. Access full book title Materials Science And Fuel Technologies Of Uranium And Plutonium Mixed Oxide.

Materials Science and Fuel Technologies of Uranium and Plutonium Mixed Oxide

Materials Science and Fuel Technologies of Uranium and Plutonium Mixed Oxide
Author: Masato Kato
Publisher: CRC Press
Total Pages: 183
Release: 2022-10-17
Genre: Science
ISBN: 1000686000

Download Materials Science and Fuel Technologies of Uranium and Plutonium Mixed Oxide Book in PDF, ePub and Kindle

Materials Science and Fuel Technologies of Uranium and Plutonium Mixed Oxide offers a deep understanding of MOX properties for nuclear fuels that will be useful for performance evaluation. It also reviews fuel property simulation technology and an irradiation behavior model required for performance evaluation. Based on research findings, the book investigates various physical property data in order to develop MOX fuel for sodium-cooled fast reactors. It discusses a database of MOX properties, including oxygen potential, melting temperature, the lattice parameter, sound speeds, thermal expansion, thermal diffusivity, oxygen self-diffusion, and chemical diffusion coefficients, that was used to derive a science-based model of MOX properties (Sci-M Pro) for fuel-performance code development. Features: Concisely covers the essential aspects of MOX nuclear fuels. Explores MOX nuclear fuels by systematically evaluating various physical property values using a behavior model. Presents fuel property simulation technology. Considers oxygen potential, the lattice parameter, sound speeds, and oxygen self-diffusion. Discusses melting temperature, thermal expansion, thermal diffusivity, and chemical diffusion coefficients. The book will be useful for researchers and engineers working in the field of nuclear fuels and nuclear materials.


Improving the Scientific Basis for Managing DOE's Excess Nuclear Materials and Spent Nuclear Fuel

Improving the Scientific Basis for Managing DOE's Excess Nuclear Materials and Spent Nuclear Fuel
Author: National Research Council
Publisher: National Academies Press
Total Pages: 124
Release: 2003-06-09
Genre: Science
ISBN: 0309087228

Download Improving the Scientific Basis for Managing DOE's Excess Nuclear Materials and Spent Nuclear Fuel Book in PDF, ePub and Kindle

The production of nuclear materials for the national defense was an intense, nationwide effort that began with the Manhattan Project and continued throughout the Cold War. Now many of these product materials, by-products, and precursors, such as irradiated nuclear fuels and targets, have been declared as excess by the Department of Energy (DOE). Most of this excess inventory has been, or will be, turned over to DOE's Office of Environmental Management (EM), which is responsible for cleaning up the former production sites. Recognizing the scientific and technical challenges facing EM, Congress in 1995 established the EM Science Program (EMSP) to develop and fund directed, long-term research that could substantially enhance the knowledge base available for new cleanup technologies and decision making. The EMSP has previously asked the National Academies' National Research Council for advice for developing research agendas in subsurface contamination, facility deactivation and decommissioning, high-level waste, and mixed and transuranic waste. For this study the committee was tasked to provide recommendations for a research agenda to improve the scientific basis for DOE's management of its high-cost, high-volume, or high-risk excess nuclear materials and spent nuclear fuels. To address its task, the committee focused its attention on DOE's excess plutonium-239, spent nuclear fuels, cesium-137 and strontium-90 capsules, depleted uranium, and higher actinide isotopes.


Nuclear Materials Safety Management

Nuclear Materials Safety Management
Author: Leslie J. Jardine
Publisher: Springer Science & Business Media
Total Pages: 276
Release: 1999-09-30
Genre: Science
ISBN: 9780792358909

Download Nuclear Materials Safety Management Book in PDF, ePub and Kindle

LESLIE J. JARDINE Lmvrence Livermore National LaboratOlY Livermore, CA 94551 U. S. A. The Advanced Research Workshop (ARW) on Nuc1ear Materials Safety held lune 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 V. S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuc1ear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuc1ear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, inc1uding vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This AR W completed discussions by experts of the nuc1ear materials safety topics that were not covered in the previous, companion ARW on Nuc1ear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuc1ear material aspects of the storage and disposition operations required for excess HEV and plutonium (see Fig. 1, Opening Remarks).


Mixed Oxide Fuel (Mox) Exploitation and Destruction in Power Reactors

Mixed Oxide Fuel (Mox) Exploitation and Destruction in Power Reactors
Author: E.R. Merz
Publisher: Springer Science & Business Media
Total Pages: 308
Release: 2013-06-29
Genre: Technology & Engineering
ISBN: 9401722889

Download Mixed Oxide Fuel (Mox) Exploitation and Destruction in Power Reactors Book in PDF, ePub and Kindle

MOX fuel, a mixture of weapon-grade plutonium and natural or depleted uranium, may be used to deplete a portion of the world's surplus of weapon-grade plutonium. A number of reactors currently operate in Europe with one-third MOX cores, and others are scheduled to begin using MOX fuels in both Europe and Japan in the near future. While Russia has laboratory-scale MOX fabrication facilities, the technology remains under study. No fuels containing plutonium are used in the U.S. The 25 presentations in this book give an impressive overview of MOX technology. The following issues are covered: an up to date report on the disposition of ex-weapons Pu in Russia; an analysis of safety features of MOX fuel configurations of different reactor concepts and their operating and control measures; an exchange of information on the status of MOX utilisation in existing power plants, the fabrication technology of various MOX fuels and their behaviour in practice; a discussion of the typical national approaches by Russia and the western countries to the utilisation of Pu as MOX fuel; an introduction to new ideas, enhancing the disposition option of MOX fuel exploitation and destruction in existing and future advanced reactor systems; and the identification of common research areas where defined tasks can be initiated in cooperative partnership.


Nuclear Materials for Fission Reactors

Nuclear Materials for Fission Reactors
Author: H. Matzke
Publisher: Elsevier
Total Pages: 359
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 0444596836

Download Nuclear Materials for Fission Reactors Book in PDF, ePub and Kindle

This volume brings together 47 papers from scientists involved in the fabrication of new nuclear fuels, in basic research of nuclear materials, their application and technology as well as in computer codes and modelling of fuel behaviour. The main emphasis is on progress in the development of non-oxide fuels besides reporting advances in the more conventional oxide fuels. The two currently performed large reactor safety programmes CORA and PHEBUS-FP are described in invited lectures. The contributions review basic property measurements, as well as the present state of fuel performance modelling. The performance of today's nuclear fuel, hence UO2, at high burnup is also reviewed with particular emphasis on the recently observed phenomenon of grain subdivision in the cold part of the oxide fuel at high burnup, the so-called "rim" effect. Similar phenomena can be simulated by ion implantation in order to better elucidate the underlying mechanism and reviews on high resolution electron microscopy provide further information. The papers will provide a useful treatise of views, ideas and new results for all those scientists and engineers involved in the specific questions of current nuclear waste management.


Nuclear Materials Safety Management

Nuclear Materials Safety Management
Author: Leslie J. Jardine
Publisher: Springer
Total Pages: 253
Release: 1999-09-30
Genre: Science
ISBN: 9780792358909

Download Nuclear Materials Safety Management Book in PDF, ePub and Kindle

LESLIE J. JARDINE Lmvrence Livermore National LaboratOlY Livermore, CA 94551 U. S. A. The Advanced Research Workshop (ARW) on Nuc1ear Materials Safety held lune 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 V. S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuc1ear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuc1ear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, inc1uding vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This AR W completed discussions by experts of the nuc1ear materials safety topics that were not covered in the previous, companion ARW on Nuc1ear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuc1ear material aspects of the storage and disposition operations required for excess HEV and plutonium (see Fig. 1, Opening Remarks).


Advances in Nuclear Fuel Chemistry

Advances in Nuclear Fuel Chemistry
Author: Markus H.A. Piro
Publisher: Woodhead Publishing
Total Pages: 672
Release: 2020-03-20
Genre: Business & Economics
ISBN: 008102651X

Download Advances in Nuclear Fuel Chemistry Book in PDF, ePub and Kindle

Advances in Nuclear Fuel Chemistry presents a high-level description of nuclear fuel chemistry based on the most recent research and advances. Dr. Markus H.A. Piro and his team of global, expert contributors cover all aspects of both the conventional uranium-based nuclear fuel cycle and non-conventional fuel cycles, including mining, refining, fabrication, and long-term storage, as well as emerging nuclear technologies, such as accident tolerant fuels and molten salt materials. Aimed at graduate students, researchers, academics and practicing engineers and regulators, this book will provide the reader with a single reference from which to learn the fundamentals of classical thermodynamics and radiochemistry. Consolidates the latest research on nuclear fuel chemistry into one comprehensive reference, covering all aspects of traditional and non-traditional nuclear fuel cycles Includes contributions from world-renowned experts from many countries representing government, industry and academia Covers a variety of fuel designs, including conventional uranium dioxide, mixed oxides, research reactor fuels, and molten salt fuels Written by experts with hands-on experience in the development of such designs


Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials

Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials
Author:
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials Book in PDF, ePub and Kindle

The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R & D (FCR & D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be H"0% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be controlled for co-precipitation processes include (1) feed solution concentration adjustment, (2) precipitant concentration and addition methods, (3) pH, temperature, mixing method and time, (4) valence adjustment, (5) solid precipitate separation from the filtrate 'mother liquor, ' generally by means of centrifugation or filtration, and (6) temperatures and times for drying, calcination, and reduction of the MOX product powder. Also a recovery step is necessary because of low, but finite solubility of the U/TRU metals in the mother liquor. The recovery step usually involves destruction of the residual precipitant and disposal of by-product wastes. Direct denitrations of U/TRU require fewer steps, but must utilize various methods to enable production of MOX with product characteristics that are acceptable for recycle fuel fabrication. The three co-precipitation processes considered for evaluation are (1) the ammonia co-precipitation process being developed in Russia, (2) the oxalate co-precipitation process, being developed in France, and (3) the ammonium-uranyl-plutonyl-carbonate (AUPuC) process being developed in Germany. Two direct denitration processes are presented for comparison: (1) the 'Microwave Heating (MH)' automated multi-batch process developed in Japan and (2) the 'Modified Direct Denitration (MDD)' continuous process being developed in the USA. Brief comparative descriptions of the U/TRU co-conversion processes are described. More complete details are provided in the references.