Manipulation Of Light Matter Interaction In Two Dimensional Systems Via Localized Surface Plasmons PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Manipulation Of Light Matter Interaction In Two Dimensional Systems Via Localized Surface Plasmons PDF full book. Access full book title Manipulation Of Light Matter Interaction In Two Dimensional Systems Via Localized Surface Plasmons.

Manipulation of Light-matter Interaction in Two-dimensional Systems Via Localized Surface Plasmons

Manipulation of Light-matter Interaction in Two-dimensional Systems Via Localized Surface Plasmons
Author: Joohee Park
Publisher:
Total Pages: 198
Release: 2015
Genre:
ISBN:

Download Manipulation of Light-matter Interaction in Two-dimensional Systems Via Localized Surface Plasmons Book in PDF, ePub and Kindle

Localized surface plasmons (LSPs), which are collective charge oscillation confined by metallic nanoparticles, gained much interest in the field of optoelectronics due to its ability to confine light down to nanoscale without a diffraction limit. As light-matter interaction in nanoscale is becoming more important due to the demand in scaling down the optoelectronic devices, my thesis describes the work on manipulation of such light-matter interaction enabled by LSPs. First, periodically patterned two-dimensional arrays of bowties were investigated to study the localized surface plasmon (LSP) resonances via reflection measurements and numerical simulations. Due to the grating created by arrays of bowties, a new, lattice-coupled LSP (lattice-LSP) mode emerged. Comparing the calculated E-field enhancement of the bowtie arrays to the reflection spectra showed that the lattice-LSP mode positions are closely related to the dips in the reflectance spectra. After the study of bowtie arrays, we showed photoluminescence (PL) from bulk, planar silicon coupled with metal bowtie nanocavities, which is an indirect bandgap semiconductor with very low emission efficiency. This was due to the E-field concentrated inside the tips of the metal bowtie achieved by LSPR, leading to increased radiative decay rate. The approach of bowtie-coupled emitter was also applied to monolayer MoS2, a transition metal dichalcogenide semiconductor which transforms to a direct bandgap semiconductor in monolayer. Silver bowtie array coupled with monolayer of MoS2 showed a high enhancement in emission (Raman and PL) due to surface-enhanced fluorescence (SEF) from weak-coupling of MoS2 excitons and bowtie's LSPR. By tailoring the design of bowtie arrays, we controlled the location of surface plasmon resonances which, coupled with MoS2 excitons, led to spectral modification of PL spectra. Furthermore, at low temperature, we achieved stronger coupling between the two systems in some designs of the bowtie array and observed Fano resonances in reflection measurements. The approach was extended to photocurrent studies in MoS2. Utilizing the helicity of monolayer MoS2 is suggested as future work to investigate the circular photocurrent in MoS2 induced by selective linear polarizations. Lastly, by fabricating nanoribbon arrays of fluorographene, evolution of localized surface plasmon mode of graphene in near-infrared wavelength range was studied via Fourier transform infrared spectroscopy (FTIR). The initial result showed possibility of tunable graphene IR plasmon resonance depending on the array design due to the localized surface plasmon mode created by the grating of alternating fluoro-graphene and graphene nanoribbons, confining E- field to excite the plasmon modes in IR range.


Plasmon-enhanced light-matter interactions

Plasmon-enhanced light-matter interactions
Author: Peng Yu
Publisher: Springer Nature
Total Pages: 348
Release: 2022-03-01
Genre: Science
ISBN: 303087544X

Download Plasmon-enhanced light-matter interactions Book in PDF, ePub and Kindle

This book highlights cutting-edge research in surface plasmons, discussing the different types and providing a comprehensive overview of their applications. Surface plasmons (SPs) receive special attention in nanoscience and nanotechnology due to their unique optical, electrical, magnetic, and catalytic properties when operating at the nanoscale. The excitation of SPs in metal nanostructures enables the manipulation of light beyond the diffraction limit, which can be utilized for enhancing and tailoring light-matter interactions and developing ultra-compact high-performance nanophotonic devices for various applications. With clear and understandable illustrations, tables, and descriptions, this book provides physicists, materials scientists, chemists, engineers, and their students with a fundamental understanding of surface plasmons and device applications as a basis for future developments.


Plasmonics and Light–Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures

Plasmonics and Light–Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures
Author: Paulo André Dias Gonçalves
Publisher: Springer
Total Pages: 232
Release: 2020-04-07
Genre: Science
ISBN: 9783030382902

Download Plasmonics and Light–Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures Book in PDF, ePub and Kindle

This thesis presents a comprehensive theoretical description of classical and quantum aspects of plasmonics in three and two dimensions, and also in transdimensional systems containing elements with different dimensionalities. It focuses on the theoretical understanding of the salient features of plasmons in nanosystems as well as on the multifaceted aspects of plasmon-enhanced light–matter interactions at the nanometer scale. Special emphasis is given to the modeling of nonclassical behavior across the transition regime bridging the classical and the quantum domains. The research presented in this dissertation provides useful tools for understanding surface plasmons in various two- and three-dimensional nanostructures, as well as quantum mechanical effects in their response and their joint impact on light–matter interactions at the extreme nanoscale. These contributions constitute novel and solid advancements in the research field of plasmonics and nanophotonics that will help guide future experimental investigations in the blossoming field of nanophotonics, and also facilitate the design of the next generation of truly nanoscale nanophotonic devices.


Plasmonics: Fundamentals and Applications

Plasmonics: Fundamentals and Applications
Author: Stefan Alexander Maier
Publisher: Springer Science & Business Media
Total Pages: 234
Release: 2007-05-16
Genre: Technology & Engineering
ISBN: 0387378251

Download Plasmonics: Fundamentals and Applications Book in PDF, ePub and Kindle

Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.


Xenes

Xenes
Author: Alessandro Molle
Publisher: Elsevier
Total Pages: 474
Release: 2022-07-04
Genre: Science
ISBN: 0128238240

Download Xenes Book in PDF, ePub and Kindle

Xenes: 2D Synthetic Materials Beyond Graphene includes all the relevant information about Xenes thus far reported, focusing on emerging materials and new trends. The book's primary goal is to include full descriptions of each Xene type by leading experts in the area. Each chapter will provide key principles, theories, methods, experiments and potential applications. The book also reviews the key challenges for synthetic 2D materials such as characterization, modeling, synthesis, and integration strategies. This comprehensive book is suitable for materials scientists and engineers, physicists and chemists working in academia and R&D in industry. The discovery of silicene dates back to 2012. Since then, other Xenes were subsequently created with synthetic methods. The portfolio of Xenes includes different chemical elements of the periodic table and hence the related honeycomb-like lattices show a wealth of electronic and optical properties that can be successfully exploited for applications. Introduces the most important Xenes, including silicene, germanene, borophene, gallenene, phosphorene, and more Provides the fundamental principles, theories, experiments and applications for the most relevant synthetic 2D materials Addresses techniques for the characterization, synthesis and integration of synthetic 2D materials


Quantum Plasmonics

Quantum Plasmonics
Author: Sergey I. Bozhevolnyi
Publisher: Springer
Total Pages: 338
Release: 2016-11-26
Genre: Science
ISBN: 3319458205

Download Quantum Plasmonics Book in PDF, ePub and Kindle

This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.


Silicene

Silicene
Author: Patrick Vogt
Publisher: Springer
Total Pages: 276
Release: 2018-11-02
Genre: Science
ISBN: 3319999648

Download Silicene Book in PDF, ePub and Kindle

This book discusses the processing and properties of silicene, including the historical and theoretical background of silicene, theoretical predictions, the synthesis and experimental properties of silicene and the potential applications and further developments. It also presents other similar monolayer materials, like germanene and phosphorene. Silicene, a new silicon allotrope with a graphene-like, honeycomb structure, has recently attracted considerable interest, because its topology affords it the same remarkable electronic properties as those of graphene. Additionally, silicene may have the potential advantage of being easily integrated in current Si-based nano/micro-electronics, offering novel technological applications. Silicene was theoretically conjectured a few years ago as a stand-alone material. However, it does not exist in nature and had to be synthesized on a substrate. It has since been successfully synthesized and multi-layer silicene structures are already being discussed. Within just a few years, silicene is now on the brink of technological applications in electronic devices.


Cavity-coupled Plasmonic Systems for Enhanced Light-matter Interactions

Cavity-coupled Plasmonic Systems for Enhanced Light-matter Interactions
Author: Abraham Vázquez-Guardado
Publisher:
Total Pages: 136
Release: 2018
Genre:
ISBN:

Download Cavity-coupled Plasmonic Systems for Enhanced Light-matter Interactions Book in PDF, ePub and Kindle

Light-matter interaction is a pivotal effect that involves the synergetic interplay of electromagnetic fields with fundamental particles. In this regard localized surface plasmons (LSP) arise from coherent interaction of the electromagnetic field with the collective oscillation of free electrons in confined sub-wavelength environments. Their most attractive properties are strong field enhancements at the near field, highly inhomogeneous, peculiar temporal and spatial distributions and unique polarization properties. LSP systems also offer a unique playground for fundamental electromagnetic physics where micro-scale systemic properties can be studied in the macro-scale. These important properties and opportunities are brought up in this work where I study hybrid cavity-coupled plasmonic systems in which the weak plasmonic element is far-field coupled with the photonic cavity by properly tuning its phase. In this work I preset the fundamental understanding of such a complex systems from the multi-resonance interaction picture along experimental demonstration. Using this platform and its intricate near fields I further demonstrate a novel mechanism to generate superchiral light: a field polarization property that adds a degree of freedom to light-matter interactions at the nanoscale exploited in advanced sensing applications and surface effect processes. Finally, the detection of non-chiral analytes, such as proteins, neurotransmitters or nanoparticles, and more complex chiral analytes, such as proteins and its conformation states, amino acids or chiral molecules at low concentrations is demonstrated in several biosensing applications. The accompanied experiential demonstrations were accomplished using the nanoimprinting technique, which places the cavity-coupled hybrid plasmonic system as a unique platform towards realistic applications not limited by expensive lithographic techniques.