Machine Learning Methods For Single Cell Rna Sequencing Data Analysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Machine Learning Methods For Single Cell Rna Sequencing Data Analysis PDF full book. Access full book title Machine Learning Methods For Single Cell Rna Sequencing Data Analysis.

Benchmarking Statistical and Machine-Learning Methods for Single-cell RNA Sequencing Data

Benchmarking Statistical and Machine-Learning Methods for Single-cell RNA Sequencing Data
Author: Nan Xi
Publisher:
Total Pages: 203
Release: 2021
Genre:
ISBN:

Download Benchmarking Statistical and Machine-Learning Methods for Single-cell RNA Sequencing Data Book in PDF, ePub and Kindle

The large-scale, high-dimensional, and sparse single-cell RNA sequencing (scRNA-seq) data have raised great challenges in the pipeline of data analysis. A large number of statistical and machine learning methods have been developed to analyze scRNA-seq data and answer related scientific questions. Although different methods claim advantages in certain circumstances, it is difficult for users to select appropriate methods for their analysis tasks. Benchmark studies aim to provide recommendations for method selection based on an objective, accurate, and comprehensive comparison among cutting-edge methods. They can also offer suggestions for further methodological development through massive evaluations conducted on real data. In Chapter 2, we conduct the first, systematic benchmark study of nine cutting-edge computational doublet-detection methods. In scRNA-seq, doublets form when two cells are encapsulated into one reaction volume by chance. The existence of doublets, which appear as but are not real cells, is a key confounder in scRNA-seq data analysis. Computational methods have been developed to detect doublets in scRNA-seq data; however, the scRNA-seq field lacks a comprehensive benchmarking of these methods, making it difficult for researchers to choose an appropriate method for their specific analysis needs. Our benchmark study compares doublet-detection methods in terms of their detection accuracy under various experimental settings, impacts on downstream analyses, and computational efficiency. Our results show that existing methods exhibited diverse performance and distinct advantages in different aspects. In Chapter 3, we develop an R package DoubletCollection to integrate the installation and execution of different doublet-detection methods. Traditional benchmark studies can be quickly out-of-date due to their static design and the rapid growth of available methods. DoubletCollection addresses this issue in benchmarking doublet-detection methods for scRNA-seq data. DoubletCollection provides a unified interface to perform and visualize downstream analysis after doublet-detection. Additionally, we created a protocol using DoubletCollection to execute and benchmark doublet-detection methods. This protocol can automatically accommodate new doublet-detection methods in the fast-growing scRNA-seq field. In Chapter 4, we conduct the first comprehensive empirical study to explore the best modeling strategy for autoencoder-based imputation methods specific to scRNA-seq data. The autoencoder-based imputation method is a family of promising methods to denoise sparse scRNA-seq data; however, the design of autoencoders has not been formally discussed in the literature. Current autoencoder-based imputation methods either borrow the practice from other fields or design the model on an ad hoc basis. We find that the method performance is sensitive to the key hyperparameter of autoencoders, including architecture, activation function, and regularization. Their optimal settings on scRNA-seq are largely different from those on other data types. Our results emphasize the importance of exploring hyperparameter space in such complex and flexible methods. Our work also points out the future direction of improving current methods.


Machine Learning in Single-Cell RNA-seq Data Analysis

Machine Learning in Single-Cell RNA-seq Data Analysis
Author: Khalid Raza
Publisher: Springer
Total Pages: 0
Release: 2024-09-27
Genre: Computers
ISBN: 9789819767021

Download Machine Learning in Single-Cell RNA-seq Data Analysis Book in PDF, ePub and Kindle

This book provides a concise guide tailored for researchers, bioinformaticians, and enthusiasts eager to unravel the mysteries hidden within single-cell RNA sequencing (scRNA-seq) data using cutting-edge machine learning techniques. The advent of scRNA-seq technology has revolutionized our understanding of cellular diversity and function, offering unprecedented insights into the intricate tapestry of gene expression at the single-cell level. However, the deluge of data generated by these experiments presents a formidable challenge, demanding advanced analytical tools, methodologies, and skills for meaningful interpretation. This book bridges the gap between traditional bioinformatics and the evolving landscape of machine learning. Authored by seasoned experts at the intersection of genomics and artificial intelligence, this book serves as a roadmap for leveraging machine learning algorithms to extract meaningful patterns and uncover hidden biological insights within scRNA-seq datasets.


Graph Representation Learning

Graph Representation Learning
Author: William L. William L. Hamilton
Publisher: Springer Nature
Total Pages: 141
Release: 2022-06-01
Genre: Computers
ISBN: 3031015886

Download Graph Representation Learning Book in PDF, ePub and Kindle

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.


Gene Expression Data Analysis

Gene Expression Data Analysis
Author: Pankaj Barah
Publisher: CRC Press
Total Pages: 276
Release: 2021-11-08
Genre: Computers
ISBN: 1000425754

Download Gene Expression Data Analysis Book in PDF, ePub and Kindle

Development of high-throughput technologies in molecular biology during the last two decades has contributed to the production of tremendous amounts of data. Microarray and RNA sequencing are two such widely used high-throughput technologies for simultaneously monitoring the expression patterns of thousands of genes. Data produced from such experiments are voluminous (both in dimensionality and numbers of instances) and evolving in nature. Analysis of huge amounts of data toward the identification of interesting patterns that are relevant for a given biological question requires high-performance computational infrastructure as well as efficient machine learning algorithms. Cross-communication of ideas between biologists and computer scientists remains a big challenge. Gene Expression Data Analysis: A Statistical and Machine Learning Perspective has been written with a multidisciplinary audience in mind. The book discusses gene expression data analysis from molecular biology, machine learning, and statistical perspectives. Readers will be able to acquire both theoretical and practical knowledge of methods for identifying novel patterns of high biological significance. To measure the effectiveness of such algorithms, we discuss statistical and biological performance metrics that can be used in real life or in a simulated environment. This book discusses a large number of benchmark algorithms, tools, systems, and repositories that are commonly used in analyzing gene expression data and validating results. This book will benefit students, researchers, and practitioners in biology, medicine, and computer science by enabling them to acquire in-depth knowledge in statistical and machine-learning-based methods for analyzing gene expression data. Key Features: An introduction to the Central Dogma of molecular biology and information flow in biological systems A systematic overview of the methods for generating gene expression data Background knowledge on statistical modeling and machine learning techniques Detailed methodology of analyzing gene expression data with an example case study Clustering methods for finding co-expression patterns from microarray, bulkRNA, and scRNA data A large number of practical tools, systems, and repositories that are useful for computational biologists to create, analyze, and validate biologically relevant gene expression patterns Suitable for multidisciplinary researchers and practitioners in computer science and the biological sciences


Handbook of Machine Learning Applications for Genomics

Handbook of Machine Learning Applications for Genomics
Author: Sanjiban Sekhar Roy
Publisher: Springer Nature
Total Pages: 222
Release: 2022-06-23
Genre: Technology & Engineering
ISBN: 9811691584

Download Handbook of Machine Learning Applications for Genomics Book in PDF, ePub and Kindle

Currently, machine learning is playing a pivotal role in the progress of genomics. The applications of machine learning are helping all to understand the emerging trends and the future scope of genomics. This book provides comprehensive coverage of machine learning applications such as DNN, CNN, and RNN, for predicting the sequence of DNA and RNA binding proteins, expression of the gene, and splicing control. In addition, the book addresses the effect of multiomics data analysis of cancers using tensor decomposition, machine learning techniques for protein engineering, CNN applications on genomics, challenges of long noncoding RNAs in human disease diagnosis, and how machine learning can be used as a tool to shape the future of medicine. More importantly, it gives a comparative analysis and validates the outcomes of machine learning methods on genomic data to the functional laboratory tests or by formal clinical assessment. The topics of this book will cater interest to academicians, practitioners working in the field of functional genomics, and machine learning. Also, this book shall guide comprehensively the graduate, postgraduates, and Ph.D. scholars working in these fields.


Computational Methods for Single-Cell Data Analysis

Computational Methods for Single-Cell Data Analysis
Author: Guo-Cheng Yuan
Publisher: Humana Press
Total Pages: 271
Release: 2019-02-14
Genre: Science
ISBN: 9781493990566

Download Computational Methods for Single-Cell Data Analysis Book in PDF, ePub and Kindle

This detailed book provides state-of-art computational approaches to further explore the exciting opportunities presented by single-cell technologies. Chapters each detail a computational toolbox aimed to overcome a specific challenge in single-cell analysis, such as data normalization, rare cell-type identification, and spatial transcriptomics analysis, all with a focus on hands-on implementation of computational methods for analyzing experimental data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Methods for Single-Cell Data Analysis aims to cover a wide range of tasks and serves as a vital handbook for single-cell data analysis.


Tumor Immunology and Immunotherapy - Cellular Methods Part B

Tumor Immunology and Immunotherapy - Cellular Methods Part B
Author:
Publisher: Academic Press
Total Pages: 588
Release: 2020-01-29
Genre: Science
ISBN: 0128186763

Download Tumor Immunology and Immunotherapy - Cellular Methods Part B Book in PDF, ePub and Kindle

Tumor Immunology and Immunotherapy – Cellular Methods Part B, Volume 632, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Topics covered include Quantitation of calreticulin exposure associated with immunogenic cell death, Side-by-side comparisons of flow cytometry and immunohistochemistry for detection of calreticulin exposure in the course of immunogenic cell death, Quantitative determination of phagocytosis by bone marrow-derived dendritic cells via imaging flow cytometry, Cytofluorometric assessment of dendritic cell-mediated uptake of cancer cell apoptotic bodies, Methods to assess DC-dependent priming of T cell responses by dying cells, and more. Contains content written by authorities in the field Provides a comprehensive view on the topics covered Includes a high level of detail