Low Power Scalable Platforms For Implantable Neural Interfaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Low Power Scalable Platforms For Implantable Neural Interfaces PDF full book. Access full book title Low Power Scalable Platforms For Implantable Neural Interfaces.

Low Power, Scalable Platforms for Implantable Neural Interfaces

Low Power, Scalable Platforms for Implantable Neural Interfaces
Author: Rikky Muller
Publisher:
Total Pages: 130
Release: 2013
Genre:
ISBN:

Download Low Power, Scalable Platforms for Implantable Neural Interfaces Book in PDF, ePub and Kindle

Clinically viable and minimally invasive neural interfaces stand to revolutionize disease care for patients with neurological conditions. For example, recent research in Brain-Machine Interfaces has shown success in using electronic signals from the motor cortex of the brain to control artificial limbs, providing hope for patients with spinal cord injuries. Currently, neural interfaces are large, wired and require open-skull operation. Future, less invasive interfaces with increased numbers of electrodes, signal processing and wireless capability will enable prosthetics, disease control and completely new user-computer interfaces. The first part of this thesis presents a signal-acquisition front end for neural recording that uses a digitally intensive architecture to reduce system area and enable operation from a 0.5V supply. The entire front-end occupies only 0.013mm2 while including "per-pixel" digitization, and enables simultaneous recording of LFP and action potentials for the first time. The second part presents the development of a minimally invasive yet scalable wireless platform for electrocorticography (ECoG), an electrophysiological technique where electrical potentials are recorded from the surface of the cerebral cortex, greatly reducing cortical scarring and improving implant longevity. A high-density flexible MEMS electrode array is tightly integrated with active circuits and a power-receiving antenna to realize a fully implantable system in a very small footprint. Building on the previously developed digitally intensive architecture, an order of magnitude in circuit area reduction is realized with 3x improvement in power efficiency over state-of-the-art enabling a scalable platform for 64-channel recording and beyond.


Ultralow-power and Robust Implantable Neural Interfaces

Ultralow-power and Robust Implantable Neural Interfaces
Author: Seetharam Narasimhan
Publisher:
Total Pages: 0
Release: 2012
Genre: Biomedical engineering
ISBN:

Download Ultralow-power and Robust Implantable Neural Interfaces Book in PDF, ePub and Kindle

Implantable systems are used in various contexts for interfacing with the body and for providing real-time monitoring and control capability. In particular, implantable neural interfaces can be used to radically improve our understanding of the nervous system and to provide precise treatments for a variety of neurological problems. However, these systems require significant computing power to perform real-time in-situ analysis of neural signals to recognize behaviorally meaningful patterns which are used to trigger appropriate corrective actions. Due to the tight area and power constraints of neural implants, it is important to develop novel algorithm-architecture-circuit co-design approaches for efficient implementation of neural signal analysis. First, we develop an algorithmic framework which is suitable for ultralow-power hardware implementation while simultaneously satisfying emerging design requirements like reliability and security. The algorithm is based on building a dynamic hierarchical multi-level vocabulary of neural patterns in the wavelet domainches The vocabulary-based analysis allows recognition of neural patterns at multiple levels (spike, burst, and pattern of bursts across multiple channels) and transmission of recorded data with large compression, thus, saving power and communication bandwidth of the integrated telemetry device. Hardware implementation of the proposed algorithm aims at reducing system power through choice of appropriate architecture and circuit-level design techniques. We show that a super-threshold design operating at a much higher frequency can achieve comparable energy dissipation as a sub-threshold low-frequency design through application of extensive power gating. It also provides significantly higher robustness of operation and yield under large process variations. We propose an architecture-level preferential design approach for further energy reduction at the cost of graceful degradation in output signal quality under voltage scaling and parameter variations. Considering the emerging need of secure computing in implantable systems, we analyze the various security threats in the proposed system. We exploit the vocabulary-based encoding of neural signals to realize an ultra-lightweight data obfuscation solution. Furthermore, we consider an emerging security threat namely, hardware Trojan attack, where an adversary introduces malicious modifications of a circuit during design or fabrication. We analyze the effectiveness of different Trojan attacks in implantable systems and develop side-channel analysis based Trojan detection approaches


Neural Interface Engineering

Neural Interface Engineering
Author: Liang Guo
Publisher: Springer Nature
Total Pages: 436
Release: 2020-05-04
Genre: Technology & Engineering
ISBN: 3030418545

Download Neural Interface Engineering Book in PDF, ePub and Kindle

This book provides a comprehensive reference to major neural interfacing technologies used to transmit signals between the physical world and the nervous system for repairing, restoring and even augmenting body functions. The authors discuss the classic approaches for neural interfacing, the major challenges encountered, and recent, emerging techniques to mitigate these challenges for better chronic performances. Readers will benefit from this book’s unprecedented scope and depth of coverage on the technology of neural interfaces, the most critical component in any type of neural prostheses. Provides comprehensive coverage of major neural interfacing technologies; Reviews and discusses both classic and latest, emerging topics; Includes classification of technologies to provide an easy grasp of research and trends in the field.


An Ultra Low Power Implantable Neural Recording System for Brain-machine Interfaces

An Ultra Low Power Implantable Neural Recording System for Brain-machine Interfaces
Author: Woradorn Wattanapanitch
Publisher:
Total Pages: 187
Release: 2011
Genre:
ISBN:

Download An Ultra Low Power Implantable Neural Recording System for Brain-machine Interfaces Book in PDF, ePub and Kindle

In the past few decades, direct recordings from different areas of the brain have enabled scientists to gradually understand and unlock the secrets of neural coding. This scientific advancement has shown great promise for successful development of practical brain-machine interfaces (BMIs) to restore lost body functions to patients with disorders in the central nervous system. Practical BMIs require the uses of implantable wireless neural recording systems to record and process neural signals, before transmitting neural information wirelessly to an external device, while avoiding the risk of infection due to through-skin connections. The implantability requirement poses major constraints on the size and total power consumption of the neural recording system. This thesis presents the design of an ultra-low-power implantable wireless neural recording system for use in brain-machine interfaces. The system is capable of amplifying and digitizing neural signals from 32 recording electrodes, and processing the digitized neural data before transmitting the neural information wirelessly to a receiver at a data rate of 2.5 Mbps. By combining state-of-the-art custom ASICs, a commercially-available FPGA, and discrete components, the system achieves excellent energy efficiency, while still offering design flexibility during the system development phase. The system's power consumption of 6.4 mW from a 3.6-V supply at a wireless output data rate of 2.5 Mbps makes it the most energy-efficient implantable wireless neural recording system reported to date. The system is integrated on a flexible PCB platform with dimensions of 1.8 cm x 5.6 cm and is designed to be powered by an implantable Li-ion battery. As part of this thesis, I describe the design of low-power integrated circuits (ICs) for amplification and digitization of the neural signals, including a neural amplifier and a 32-channel neural recording IC. Low-power low-noise design techniques are utilized in the design of the neural amplifier such that it achieves a noise efficiency factor (NEF) of 2.67, which is close to the theoretical limit determined by physics. The neural recording IC consists of neural amplifiers, analog multiplexers, ADCs, serial programming interfaces, and a digital processing unit. It can amplify and digitize neural signals from 32 recording electrodes, with a sampling rate of 31.25 kS/s per channel, and send the digitized data off-chip for further processing. The IC was successfully tested in an in-vivo wireless recording experiment from a behaving primate with an average power dissipation per channel of 10.1 [mu]W. Such a system is also widely useful in implantable brain-machine interfaces for the blind and paralyzed, and in cochlea implants for the deaf.


Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems

Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems
Author: Kofi A.A. Makinwa
Publisher: Springer
Total Pages: 332
Release: 2015-08-28
Genre: Technology & Engineering
ISBN: 3319211854

Download Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems Book in PDF, ePub and Kindle

This book is based on the 18 tutorials presented during the 24th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of efficient sensor interfaces and low-power RF systems. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.


Multimodal Implantable Neural Interfacing Microsystem

Multimodal Implantable Neural Interfacing Microsystem
Author: Masoud Rezaei
Publisher:
Total Pages: 66
Release: 2019
Genre:
ISBN:

Download Multimodal Implantable Neural Interfacing Microsystem Book in PDF, ePub and Kindle

Studying brain functionality to help patients suffering from neurological diseases needs fully implantable brain interface to enable access to neural activities as well as read and analyze them. In this thesis, ultra-low power implantable brain-machine-interfaces (BMIs) that are based on several innovations on circuits and systems are studied for use in neural recording applications. Such a system is intended to collect information on neural activity emitted by several hundreds of neurons, while activating them on demand using actuating means like electro- and/or photo-stimulation. Such a system must provide several recording channels, while consuming very low energy, and have an extremely small size for safety and biocompatibility. Typically, a brain interfacing microsystem includes several building blocks, such as an analog front-end (AFE), an analog-to-digital converter (ADC), digital signal processing modules, and a wireless data transceiver. A BMI extracts neural signals from noise, digitizes them, and transmits them to a base station without interfering with the natural behavior of the subject. This thesis focuses on ultra-low power front-ends to be utilized in a BMI, and presents front-ends with several innovative strategies to consume less power, while enabling high-resolution and high-quality of data. First, we present a new front-end structure using a current-reuse scheme. This structure is scalable to huge numbers of recording channels, owing to its small implementation silicon area and its low power consumption. The proposed current-reuse AFE, which includes a low-noise amplifier (LNA) and a programmable gain amplifier (PGA), employs a new fully differential current-mirror topology using fewer transistors. This is an improvement over several design parameters, in terms of power consumption and noise, over previous current-reuse amplifier circuit implementations. In the second part of this thesis, we propose a new multi-channel sigma-delta converter that converts several channels independently using a single op-amp and several charge storage capacitors. Compared to conventional techniques, this method applies a new interleaved multiplexing scheme, which does not need any reset phase for the integrator while it switches to a new channel; this enhances its resolution. When the chip area is not a priority, other approaches can be more attractive, and we propose a new power-efficient strategy based on a new in-channel ultra-low power sigma-delta converter designed to decrease further power consumption. This new converter uses a low-voltage architecture based on an innovative feed-forward topology that minimizes the nonlinearity associated with low-voltage supply.


Handbook of Neuroengineering

Handbook of Neuroengineering
Author: Nitish V. Thakor
Publisher: Springer Nature
Total Pages: 3686
Release: 2023-02-02
Genre: Technology & Engineering
ISBN: 9811655405

Download Handbook of Neuroengineering Book in PDF, ePub and Kindle

This Handbook serves as an authoritative reference book in the field of Neuroengineering. Neuroengineering is a very exciting field that is rapidly getting established as core subject matter for research and education. The Neuroengineering field has also produced an impressive array of industry products and clinical applications. It also serves as a reference book for graduate students, research scholars and teachers. Selected sections or a compendium of chapters may be used as “reference book” for a one or two semester graduate course in Biomedical Engineering. Some academicians will construct a “textbook” out of selected sections or chapters. The Handbook is also meant as a state-of-the-art volume for researchers. Due to its comprehensive coverage, researchers in one field covered by a certain section of the Handbook would find other sections valuable sources of cross-reference for information and fertilization of interdisciplinary ideas. Industry researchers as well as clinicians using neurotechnologies will find the Handbook a single source for foundation and state-of-the-art applications in the field of Neuroengineering. Regulatory agencies, entrepreneurs, investors and legal experts can use the Handbook as a reference for their professional work as well.​


Optical Neural Interfaces

Optical Neural Interfaces
Author: Massimo De Vittorio
Publisher: Frontiers Media SA
Total Pages: 88
Release: 2019-11-01
Genre:
ISBN: 2889630803

Download Optical Neural Interfaces Book in PDF, ePub and Kindle


Future Trends in Microelectronics

Future Trends in Microelectronics
Author: Serge Luryi
Publisher: John Wiley & Sons
Total Pages: 476
Release: 2007-06-22
Genre: Technology & Engineering
ISBN: 0470168250

Download Future Trends in Microelectronics Book in PDF, ePub and Kindle

In this book leading profesionals in the semiconductor microelectronics field discuss the future evolution of their profession. The following are some of the questions discussed: Does CMOS technology have a real problem? Do transistors have to be smaller or just better and made of better materials? What is to come after semiconductors? Superconductors or molecular conductors? Is bottom-up self-assembling the answer to the limitation of top-down lithography? Is it time for Optics to become a force in computer evolution? Quantum Computing, Spintronics? Where is the printable plastic electronics proposed 10 years ago? Are carbon nanotube transistors the CMOS of the future?


Microelectronic Implants for Central and Peripheral Nervous System: Overview of Circuit and System Technology

Microelectronic Implants for Central and Peripheral Nervous System: Overview of Circuit and System Technology
Author: Morris (Ming-Dou) Ker
Publisher: Frontiers Media SA
Total Pages: 162
Release: 2022-01-11
Genre: Science
ISBN: 2889740234

Download Microelectronic Implants for Central and Peripheral Nervous System: Overview of Circuit and System Technology Book in PDF, ePub and Kindle

Professor Ker is on the Board of Amazingneuron. The Other Topic Editors Declare no Competing Interests With Regards to the Research Topic Theme.