Low Power Design Of Nanometer Fpgas PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Low Power Design Of Nanometer Fpgas PDF full book. Access full book title Low Power Design Of Nanometer Fpgas.

Low-Power Design of Nanometer FPGAs

Low-Power Design of Nanometer FPGAs
Author: Hassan Hassan
Publisher: Morgan Kaufmann
Total Pages: 257
Release: 2009-09-14
Genre: Technology & Engineering
ISBN: 0080922341

Download Low-Power Design of Nanometer FPGAs Book in PDF, ePub and Kindle

Low-Power Design of Nanometer FPGAs Architecture and EDA is an invaluable reference for researchers and practicing engineers concerned with power-efficient, FPGA design. State-of-the-art power reduction techniques for FPGAs will be described and compared. These techniques can be applied at the circuit, architecture, and electronic design automation levels to describe both the dynamic and leakage power sources and enable strategies for codesign. Low-power techniques presented at key FPGA design levels for circuits, architectures, and electronic design automation, form critical, "bridge" guidelines for codesign Comprehensive review of leakage-tolerant techniques empowers designers to minimize power dissipation Provides valuable tools for estimating power efficiency/savings of current, low-power FPGA design techniques


Low-Power Variation-Tolerant Design in Nanometer Silicon

Low-Power Variation-Tolerant Design in Nanometer Silicon
Author: Swarup Bhunia
Publisher: Springer Science & Business Media
Total Pages: 444
Release: 2010-11-10
Genre: Technology & Engineering
ISBN: 1441974180

Download Low-Power Variation-Tolerant Design in Nanometer Silicon Book in PDF, ePub and Kindle

Design considerations for low-power operations and robustness with respect to variations typically impose contradictory requirements. Low-power design techniques such as voltage scaling, dual-threshold assignment and gate sizing can have large negative impact on parametric yield under process variations. This book focuses on circuit/architectural design techniques for achieving low power operation under parameter variations. We consider both logic and memory design aspects and cover modeling and analysis, as well as design methodology to achieve simultaneously low power and variation tolerance, while minimizing design overhead. This book will discuss current industrial practices and emerging challenges at future technology nodes.


Low-Energy FPGAs — Architecture and Design

Low-Energy FPGAs — Architecture and Design
Author: Varghese George
Publisher: Springer Science & Business Media
Total Pages: 185
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461514215

Download Low-Energy FPGAs — Architecture and Design Book in PDF, ePub and Kindle

Low-Energy FPGAs: Architecture and Design is a primary resource for both researchers and practicing engineers in the field of digital circuit design. The book addresses the energy consumption of Field-Programmable Gate Arrays (FPGAs). FPGAs are becoming popular as embedded components in computing platforms. The programmability of the FPGA can be used to customize implementations of functions on an application basis. This leads to performance gains, and enables reuse of expensive silicon. Chapter 1 provides an overview of digital circuit design and FPGAs. Chapter 2 looks at the implication of deep-submicron technology onFPGA power dissipation. Chapter 3 describes the exploration environment to guide and evaluate design decisions. Chapter 4 discusses the architectural optimization process to evaluate the trade-offs between the flexibility of the architecture, and the effect on the performance metrics. Chapter 5 reviews different circuit techniques to reduce the performance overhead of some of the dominant components. Chapter 6 shows methods to configure FPGAs to minimize the programming overhead. Chapter 7 addresses the physical realization of some of the critical components and the final implementation of a specific low-energy FPGA. Chapter 8 compares the prototype array to an equivalent commercial architecture.


Energy Efficient and Reliable Embedded Nanoscale SRAM Design

Energy Efficient and Reliable Embedded Nanoscale SRAM Design
Author: Bhupendra Singh Reniwal
Publisher: CRC Press
Total Pages: 221
Release: 2023-11-29
Genre: Technology & Engineering
ISBN: 100098513X

Download Energy Efficient and Reliable Embedded Nanoscale SRAM Design Book in PDF, ePub and Kindle

This reference text covers a wide spectrum for designing robust embedded memory and peripheral circuitry. It will serve as a useful text for senior undergraduate and graduate students and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discusses low-power design methodologies for static random-access memory (SRAM) Covers radiation-hardened SRAM design for aerospace applications Focuses on various reliability issues that are faced by submicron technologies Exhibits more stable memory topologies Nanoscale technologies unveiled significant challenges to the design of energy- efficient and reliable SRAMs. This reference text investigates the impact of process variation, leakage, aging, soft errors and related reliability issues in embedded memory and periphery circuitry. The text adopts a unique way to explain the SRAM bitcell, array design, and analysis of its design parameters to meet the sub-nano-regime challenges for complementary metal-oxide semiconductor devices. It comprehensively covers low- power-design methodologies for SRAM, exhibits more stable memory topologies, and radiation-hardened SRAM design for aerospace applications. Every chapter includes a glossary, highlights, a question bank, and problems. The text will serve as a useful text for senior undergraduate students, graduate students, and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discussing comprehensive studies of variability-induced failure mechanism in sense amplifiers and power, delay, and read yield trade-offs, this reference text will serve as a useful text for senior undergraduate, graduate students, and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. It covers the development of robust SRAMs, well suited for low-power multi-core processors for wireless sensors node, battery-operated portable devices, personal health care assistants, and smart Internet of Things applications.


Green Communication with Field-programmable Gate Array for Sustainable Development

Green Communication with Field-programmable Gate Array for Sustainable Development
Author: Bishwajeet Pandey
Publisher: CRC Press
Total Pages: 255
Release: 2023-09-05
Genre: Technology & Engineering
ISBN: 1000929744

Download Green Communication with Field-programmable Gate Array for Sustainable Development Book in PDF, ePub and Kindle

The text discusses the designing of field-programmable gate array-based green computing circuits for efficient green communication. It will help senior undergraduate, graduate students, and academic researchers from diverse engineering domains such as electrical, electronics and communication, and computer. Discusses hardware description language coding of green communication computing (GCC) circuits. Presents field-programmable gate arrays-based power-efficient models. Explores the integrations of universal asynchronous receiver/transmitter and field-programmable gate arrays. Covers architecture and programming tools of field-programmable gate arrays. Showcases Verilog and VHDL codes for green computing circuits such as finite impulse response filter, parity checker, and packet counter. The text discusses the designing of energy-efficient network components, using low voltage complementary metal-oxide semiconductors, high-speed transceiver logic, and stub series-terminated logic input/output standards. It showcases how to write Verilog and VHDL codes for green computing circuits including finite impulse response filter, packet counter, and universal asynchronous receiver-transmitter.


Low Power Circuits for Emerging Applications in Communications, Computing, and Sensing

Low Power Circuits for Emerging Applications in Communications, Computing, and Sensing
Author: Fei Yuan
Publisher: CRC Press
Total Pages: 154
Release: 2018-12-07
Genre: Computers
ISBN: 0429017707

Download Low Power Circuits for Emerging Applications in Communications, Computing, and Sensing Book in PDF, ePub and Kindle

The book addresses the need to investigate new approaches to lower energy requirement in multiple application areas and serves as a guide into emerging circuit technologies. It explores revolutionary device concepts, sensors, and associated circuits and architectures that will greatly extend the practical engineering limits of energy-efficient computation. The book responds to the need to develop disruptive new system architecutres, circuit microarchitectures, and attendant device and interconnect technology aimed at achieving the highest level of computational energy efficiency for general purpose computing systems. Features Discusses unique technologies and material only available in specialized journal and conferences Covers emerging applications areas, such as ultra low power communications, emerging bio-electronics, and operation in extreme environments Explores broad circuit operation, ex. analog, RF, memory, and digital circuits Contains practical applications in the engineering field, as well as graduate studies Written by international experts from both academia and industry


Design Methodologies and CAD Tools for Leakage Power Optimization in FPGAs

Design Methodologies and CAD Tools for Leakage Power Optimization in FPGAs
Author: Hassan Hassan
Publisher:
Total Pages: 144
Release: 2008
Genre:
ISBN: 9780494433836

Download Design Methodologies and CAD Tools for Leakage Power Optimization in FPGAs Book in PDF, ePub and Kindle

The scaling of the CMOS technology has precipitated an exponential increase in both subthreshold and gate leakage currents in modern VLSI designs. Consequently, the contribution of leakage power to the total chip power dissipation for CMOS designs is increasing rapidly, which is estimated to be 40% for the current technology generations and is expected to exceed 50% by the 65nm CMOS technology. In FPGAs, the power dissipation problem is further aggravated when compared to ASIC designs because FPGA use more transistors per logic function when compared to ASIC designs. Consequently, solving the leakage power problem is pivotal to devising power-aware FPGAs in the nanometer regime. This thesis focuses on devising both architectural and CAD techniques for leakage mitigation in FPGAs. Several CAD and architectural modifications are proposed to reduce the impact of leakage power dissipation on modern FPGAs. Firstly, multi-threshold CMOS (MTCMOS) techniques are introduced to FPGAs to permanently turn OFF the unused resources of the FPGA, FPGAs are characterized with low utilization percentages that can reach 60%. Moreover, such architecture enables the dynamic shutting down of the FPGA idle parts, thus reducing the standby leakage significantly. Employing the MTCMOS technique in FPGAs requires several changes to the FPGA architecture, including the placement and routing of the sleep signals and the MTCMOS granularity. On the CAD level, the packing and placement stages are modified to allow the possibility of dynamically turning OFF the idle parts of the FPGA. A new activity generation algorithm is proposed and implemented that aims to identify the logic blocks in a design that exhibit similar idleness periods. Several criteria for the activity generation algorithm are used, including connectivity and logic function. Several versions of the activity generation algorithm are implemented to trade power savings with runtime. A newly developed packing algorithm uses the resulting activities to minimize leakage power dissipation by packing the logic blocks with similar or close activities together. By proposing an FPGA architecture that supports MTCMOS and developing a CAD tool that supports the new architecture, an average power savings of 30% is achieved for a 90nm CMOS process while incurring a speed penalty of less than 5%. This technique is further extended to provide a timing-sensitive version of the CAD flow to vary the speed penalty according to the criticality of each logic block. Secondly, a new technique for leakage power reduction in FPGAs based on the use of input dependency is developed. Both subthreshold and gate leakage power are heavily dependent on the input state. In FPGAs, the effect of input dependency is exacerbated due to the use of pass-transistor multiplexer logic, which can exhibit up to 50% variation in leakage power due to the input states. In this thesis, a new algorithm is proposed that uses bit permutation to reduce subthreshold and gate leakage power dissipation in FPGAs. The bit permutation algorithm provides an average leakage power reduction of 40% while having less than 2% impact on the performance and no penalty on the design area. Thirdly, an accurate probabilistic power model for FPGAs is developed to quantify the savings from the proposed leakage power reduction techniques. The proposed power model accounts for dynamic, short circuit, and leakage power (including both subthreshold and gate leakage power) dissipation in FPGAs. Moreover, the power model accounts for power due to glitches, which accounts for almost 20% of the dynamic power dissipation in FPGAs. The use of probabilities in the power model makes it more computationally efficient than the other FPGA power models in the literature that rely on long input sequence simulations. One of the main advantages of the proposed power model is the incorporation of spatial correlation while estimating the signal probability. Other probabilistic FPGA power models assume spatial independence among the design signals, thus overestimating the power calculations. In the proposed model, a probabilistic model is proposed for spatial correlations among the design signals. Moreover, a different variation is proposed that manages to capture most of the spatial correlations with minimum impact on runtime. Furthermore, the proposed power model accounts for the input dependency of subthreshold and gate leakage power dissipation. By comparing the proposed power model to HSpice simulation, the estimated power is within 8% and is closer to HSpice simulations than other probabilistic FPGA power models by an average of 20%.


Nanometer CMOS ICs

Nanometer CMOS ICs
Author: Harry J.M. Veendrick
Publisher: Springer
Total Pages: 639
Release: 2017-04-28
Genre: Technology & Engineering
ISBN: 3319475975

Download Nanometer CMOS ICs Book in PDF, ePub and Kindle

This textbook provides a comprehensive, fully-updated introduction to the essentials of nanometer CMOS integrated circuits. It includes aspects of scaling to even beyond 12nm CMOS technologies and designs. It clearly describes the fundamental CMOS operating principles and presents substantial insight into the various aspects of design implementation and application. Coverage includes all associated disciplines of nanometer CMOS ICs, including physics, lithography, technology, design, memories, VLSI, power consumption, variability, reliability and signal integrity, testing, yield, failure analysis, packaging, scaling trends and road blocks. The text is based upon in-house Philips, NXP Semiconductors, Applied Materials, ASML, IMEC, ST-Ericsson, TSMC, etc., courseware, which, to date, has been completed by more than 4500 engineers working in a large variety of related disciplines: architecture, design, test, fabrication process, packaging, failure analysis and software.