Local Impacts Of Mercury Emissions From Coal Fired Power Plants PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Local Impacts Of Mercury Emissions From Coal Fired Power Plants PDF full book. Access full book title Local Impacts Of Mercury Emissions From Coal Fired Power Plants.

LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.
Author: J. ADAMS
Publisher:
Total Pages: 47
Release: 2004
Genre:
ISBN:

Download LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS. Book in PDF, ePub and Kindle

A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. There are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows (Lopez et al. 2003)). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around two mid-size coal fired power plants. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. These programs found the following: (1) At both sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Kincaid plant, there was excess soil Hg along heavily traveled roads. The spatial pattern of soil mercury concentrations did not match the pattern of vegetation Hg concentrations at either plant. (2) At both sites, the subsurface (5-10 cm) samples the Hg concentration correlated strongly with the surface samples (0-5 cm). Average subsurface sample concentrations were slightly less than the surface samples, however, the difference was not statistically significant. (3) An unequivocal definition of background Hg was not possible at either site. Using various assumed background soil mercury concentrations, the percentage of mercury deposited within 10 km of the plant ranged between 1.4 and 8.5% of the RGM emissions. Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. Estimates of the percentage of total Hg deposition ranged between 0.3 and 1.7%. These small percentages of deposition are consistent with the empirical findings of only minor perturbations in environmental levels, as opposed to ''hot spots'', near the plants. The major objective of this study was to determine if there was evidence for ''hot spots'' of mercury deposition around coal-fired power plants. Although the term has been used extensively, it has never been defined. From a public health perspective, such a ''hot spot'' must be large enough to insure that it did not occur by chance, and it must affect water bodies large enough to support a population of subsistence fishers. The results of this study support the hypothesis that neither of these conditions have been met.


MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.

MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.
Author: J. ADAMS
Publisher:
Total Pages: 97
Release: 2005
Genre:
ISBN:

Download MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK. Book in PDF, ePub and Kindle

A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. However, there are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg{sub 0} in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around two mid-size coal fired power plants. The objectives were to determine if local mercury hot-spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. These programs found the following: (1) At both sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Kincaid plant, there was excess soil Hg along heavily traveled roads. The spatial pattern of soil mercury concentrations did not match the pattern of vegetation Hg concentrations at either plant. (2) At both sites, the subsurface (5-10 cm) samples the Hg concentration correlated strongly with the surface samples (0-5 cm). Average subsurface sample concentrations were slightly less than the surface samples; however, the difference was not statistically significant. (3) An unequivocal definition of background Hg was not possible at either site. Using various assumed background soil mercury concentrations, the percentage of mercury deposited within 10 km of the plant ranged between 1.4 and 8.5% of the RGM emissions. Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. Estimates of the percentage of total Hg deposition ranged between 0.3 and 1.7%. These small percentages of deposition are consistent with the empirical findings of only minor perturbations in environmental levels, as opposed to ''hot spots'', near the plants. The major objective of this study was to determine if there was evidence for ''hot-spots'' of mercury deposition around coal-fired power plants. Although the term has been used extensively, it has never been defined. From a public health perspective, such a ''hot spot'' must be large enough to insure that it did not occur by chance, and it must affect water bodies large enough to support a population of subsistence fishers. The results of this study support the hypothesis that neither of these conditions has been met.


Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants

Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants
Author:
Publisher:
Total Pages:
Release: 2008
Genre:
ISBN:

Download Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants Book in PDF, ePub and Kindle

The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study found the following: (1) There was some correlation between the prevailing wind direction and measured soil and oak leaf concentrations. This correlation was not statistically significant, but higher soil concentrations were generally found in the east and southeast from the plants and lower soil concentrations were found west/southwest from the plants. The prevailing winds are to the east. The Conemaugh plant which was the most southeast of the three plants did have the highest average oak leaf and soil mercury concentrations. Based on emissions, the Keystone plant would be expected to see the highest concentrations as it emitted about 25% more mercury than the other two plants. (2) The results of this study did not turn up strong evidence for large areas (several square miles) of elevated mercury concentrations around the three coal-fired power plants that were tested. This does not mean that there is no effect, there was some evidence of increasing mercury content to the east and south of these plants, however, the trends were not statistically significant suggesting that if the effects exist, they are small.


LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.
Author:
Publisher:
Total Pages: 19
Release: 2005
Genre:
ISBN:

Download LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS. Book in PDF, ePub and Kindle

Mercury is a neurotoxin that accumulates in the food chain and is therefore a health concern. The primary human exposure pathway is through fish consumption. Coal-fired power plants emit mercury and there is uncertainty over whether this creates localized hot spots of mercury leading to substantially higher levels of mercury in water bodies and therefore higher exposure. To obtain direct evidence of local deposition patterns, soil and vegetations samples from around three U.S. coal-fired power plants were collected and analyzed for evidence of hot spots and for correlation with model predictions of deposition. At all three sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. It was estimated that less than 2% of the total mercury emissions from these plants deposited within 15 km of these plants. These small percentages of deposition are consistent with the literature review findings of only minor perturbations in environmental levels, as opposed to hot spots, near the plants. The major objective of the sampling studies was to determine if there was evidence for hot spots of mercury deposition around coal-fired power plants. From a public health perspective, such a hot spot must be large enough to insure that it did not occur by chance, and it must increase mercury concentrations to a level in which health effects are a concern in a water body large enough to support a population of subsistence fishers. The results of this study suggest that neither of these conditions has been met.


LOCAL IMPACTS OF MERCURY EMISSIONS FROM THE MONTICELLO COAL FIRED POWER PLANT.

LOCAL IMPACTS OF MERCURY EMISSIONS FROM THE MONTICELLO COAL FIRED POWER PLANT.
Author: J. WILLIAMS
Publisher:
Total Pages: 26
Release: 2006
Genre:
ISBN:

Download LOCAL IMPACTS OF MERCURY EMISSIONS FROM THE MONTICELLO COAL FIRED POWER PLANT. Book in PDF, ePub and Kindle

The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as currently proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury ''hot spots'', using two types of evidence. First, the world-wide literature was searched for reports of deposition around mercury sources, including coal-fired power plants. Second, soil samples from around two mid-sized U.S. coal-fired power plants were collected and analyzed for evidence of ''hot spots'' and for correlation with model predictions of deposition. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (A) local soil concentration Hg increments of 30%-60%, (B) sediment increments of 18-30%, (C) wet deposition increments of 11-12%, and (D) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around the Monticello coal fired power plant. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. The study found the following: (1) There was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Monticello plant, excess soil Hg was associated with soil characteristics with higher values near the lake. Vegetation concentration showed some correlation with soil concentrations having higher mercury in vegetation when the soil mercury. (2) Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. The total deposition within 50 Km of the plant was predicted to be 4.2% of the total emitted. In the deposition, RGM is responsible for 98.7% of the total deposition, elemental mercury accounts for 1.1% and particulate mercury accounts for 0.2%. Less than 1% of the elemental mercury emitted was predicted to deposit within 50 km.


THE LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS ON HUMAN HEALTH RISK. PROGRESS REPORT FOR THE PERIOD OF MARCH 2003 - MARCH 2003

THE LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS ON HUMAN HEALTH RISK. PROGRESS REPORT FOR THE PERIOD OF MARCH 2003 - MARCH 2003
Author: T. M.LIPFERT SULLIVAN (F. D.MORRIS, S. M.)
Publisher:
Total Pages: 68
Release: 2003
Genre:
ISBN:

Download THE LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS ON HUMAN HEALTH RISK. PROGRESS REPORT FOR THE PERIOD OF MARCH 2003 - MARCH 2003 Book in PDF, ePub and Kindle

This report presents a follow-up to previous assessments of the health risks of mercury that BNL performed for the Department of Energy. Methylmercury is an organic form of mercury that has been implicated as the form of mercury that impacts human health. A comprehensive risk assessment report was prepared (Lipfert et al., 1994) that led to several journal articles and conference presentations (Lipfert et al. 1994, 1995, 1996). In 2001, a risk assessment of mercury exposure from fish consumption was performed for 3 regions of the U.S (Northeast, Southeast, and Midwest) identified by the EPA as regions of higher impact from coal emissions (Sullivan, 2001). The risk assessment addressed the effects of in utero exposure to children through consumption of fish by their mothers. Two population groups (general population and subsistence fishers) were considered. Three mercury levels were considered in the analysis, current conditions based on measured data, and hypothetical reductions in Hg levels due to a 50% and 90% reduction in mercury emissions from coal fired power plants. The findings of the analysis suggested that a 90% reduction in coal-fired emissions would lead to a small reduction in risk to the general population (population risk reduction on the order of 10{sup -5}) and that the population risk is born by less than 1% of the population (i.e. high end fish consumers). The study conducted in 2001 focused on the health impacts arising from regional deposition patterns as determined by measured data and modeling. Health impacts were assessed on a regional scale accounting for potential percent reductions in mercury emissions from coal. However, quantitative assessment of local deposition near actual power plants has not been attempted. Generic assessments have been performed, but these are not representative of any single power plant. In this study, general background information on the mercury cycle, mercury emissions from coal plants, and risk assessment are provided to provide the basis for examining the impacts of local deposition. A section that covers modeling of local deposition of mercury emitted from coal power plants follows. The code ISCST3 was used with mercury emissions data from two power plants and local meteorological conditions to assess local deposition. The deposition modeling results were used to estimate the potential increase in mercury deposition that could occur in the vicinity of the plant. Increased deposition was assumed to lead to a linearly proportional increase in mercury concentrations in fish in local water bodies. Fish are the major pathway for human health impacts and the potential for increased mercury exposure was evaluated and the risks of such exposure estimated. Based on the findings recommendations for future work and conclusions are provided. Mercury is receiving substantial attention in a number of areas including: understanding of mercury deposition, bioaccumulation, and transport through the atmosphere, and improvements to the understanding of health impacts created by exposure to mercury. A literature review of key articles is presented as Appendix A.


ASSESING THE IMPACTS OF LOCAL DEPOSITION OF MERCURY ASSOCIATED WITH COAL-FIRED POWER PLANTS.

ASSESING THE IMPACTS OF LOCAL DEPOSITION OF MERCURY ASSOCIATED WITH COAL-FIRED POWER PLANTS.
Author: J. ADAMS
Publisher:
Total Pages: 4
Release: 2004
Genre:
ISBN:

Download ASSESING THE IMPACTS OF LOCAL DEPOSITION OF MERCURY ASSOCIATED WITH COAL-FIRED POWER PLANTS. Book in PDF, ePub and Kindle

Mercury emissions from coal fired plants will be limited by regulations enforced by the Environmental Protection Agency. However, there is still debate over whether the limits should be on a plant specific basis or a nationwide basis. The nationwide basis allows a Cap and Trade program similar to that for other air pollutants. Therefore, a major issue is the magnitude and extent of local deposition. Computer modeling suggests that increased local deposition will occur on a local (2 to 10 Km) to regional scale (20 to 50 Km) with the increase being a small percentage of background deposition on the regional scale. The amount of deposition depends upon many factors including emission rate, chemical form of mercury emitted (with reactive gaseous mercury depositing more readily than elemental mercury), other emission characteristics (stack height, exhaust temperature, etc), and meteorological conditions. Modeling suggests that wet deposition will lead to the highest deposition rates and that these will occur locally. Dry deposition is also predicted to deposit approximately the same amount of mass as wet deposition, but over a much greater area. Therefore, dry deposition rates will contribute a fraction of total deposition on the regional scale. The models have a number of assumptions pertaining to deposition parameters and there is uncertainty in the predicted deposition rates. A key assumption in the models is that the mixture of reactive gaseous mercury (RGM) to elemental mercury Hg(0) is constant in the exhaust plume. Recent work suggests that RGM converts to Hg(0) quickly. Deposition measurements around coal-fired power plants would help reduce the uncertainties in the models. A few studies have been performed to examine the deposition of mercury around point sources. Measurement of soil mercury downwind from chlor-alkali plants has shown increased deposition within a few Km. Studies of soils, sediments, and wet deposition around coal plants typically find some evidence of enhanced deposition; however, the statistical significance of the results is generally weak. A review of these studies is found in Lipfert. This study combines modeling of mercury deposition patterns with soil mercury measurements. The model used emissions data, meteorological conditions, and plant data to define sample locations likely to exhibit deposition in excess of background, that can be attributed to the power plant. Data were collected at the specified locations in November, 2003.


Coal Fired Flue Gas Mercury Emission Controls

Coal Fired Flue Gas Mercury Emission Controls
Author: Jiang Wu
Publisher: Springer
Total Pages: 163
Release: 2015-03-17
Genre: Technology & Engineering
ISBN: 3662463474

Download Coal Fired Flue Gas Mercury Emission Controls Book in PDF, ePub and Kindle

Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations. Readers will arrive at a comprehensive understanding of various mercury emission control methods that are suitable for industrial applications. The book is intended for scientists, researchers, engineers and graduate students in the fields of energy science and technology, environmental science and technology and chemical engineering.


Mercury Emissions from Coal-fired Power Plants

Mercury Emissions from Coal-fired Power Plants
Author: Paul Franklin Tirey
Publisher:
Total Pages: 268
Release: 2008
Genre: Coal-fired power plants
ISBN:

Download Mercury Emissions from Coal-fired Power Plants Book in PDF, ePub and Kindle

This dissertation tests whether or not mercury emissions from electric power plants are not a significant contributor to mercury measurements in rainfall and argues that the current United States (U.S.) Environmental Protection Agency (EPA) proposed regulatory scheme for controlling mercury from electric power plants, the Clean Air Mercury Rule (CAMR), is an effective regulatory mechanism by using a number of ordinary least square (OLS) and spatial regression models. Two dependent variables are tested, mercury concentration (the average mercury concentration measured in rainfall in nanograms per liter, ng/L) and mercury deposition (the total annual mercury falling at each measurement site in nanograms per square meter, ng/m 2 ), with mercury concentration determined to be the more valid dependent variable. The source for the mercury concentration and deposition data is the Mercury Deposition Network (MDN), part of the National Atmospheric Deposition Program (NADP), with the data obtained for between 46 and 75 sites operating from 2001 through 2005. Independent variables include: (1) emissions to the air from power plants, (2) emissions to the air from other industrial sites, (3) emissions to the land from the mining industry, (4) population as a proxy variable for vehicle emissions, (5) burned area from wildfires, (6) precipitation and (7) dummy variables for year and EPA region. Data for independent variables 1, 2, and 3 were obtained from the EPA's Toxic Release Inventory (TRI) program. Population for each county in the U.S. was obtained from the Census Bureau, and wildfire data was obtained from the U.S. Department of Agriculture satellite based fire mapping system, Moderate Resolution Imaging Spectroradiometer (MODIS). Microsoft Access was utilized to summarize and total the independent variables within a variable radius of the MDN measurement sites, ranging from 25 to 500 miles. The software tool GeoDa 0.95i, made available by the University of Illinois, was used to perform the OLS, spatial lag, and spatial error regressions. After changing the functional form of the equation to a log-linear model (using the natural log form of the dependent variable and the linear forms of the independent variables) to deal with heteroskedasticity, the results indicate a strong spatial component to the model. Other than precipitation, the most significant predictor of mercury concentration is fire area burned between 50 and 75 miles of the MDN measurement site (z = 3.08, p