Linear Algebra And Optimization With Applications To Machine Learning Volume Ii Fundamentals Of Optimization Theory With Applications To Machine Learning PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Linear Algebra And Optimization With Applications To Machine Learning Volume Ii Fundamentals Of Optimization Theory With Applications To Machine Learning PDF full book. Access full book title Linear Algebra And Optimization With Applications To Machine Learning Volume Ii Fundamentals Of Optimization Theory With Applications To Machine Learning.

Linear Algebra and Optimization with Applications to Machine Learning

Linear Algebra and Optimization with Applications to Machine Learning
Author: Jean Gallier
Publisher: World Scientific Publishing Company
Total Pages: 895
Release: 2020-03-06
Genre: Mathematics
ISBN: 9789811216565

Download Linear Algebra and Optimization with Applications to Machine Learning Book in PDF, ePub and Kindle

Volume 2 applies the linear algebra concepts presented in Volume 1 to optimization problems which frequently occur throughout machine learning. This book blends theory with practice by not only carefully discussing the mathematical under pinnings of each optimization technique but by applying these techniques to linear programming, support vector machines (SVM), principal component analysis (PCA), and ridge regression. Volume 2 begins by discussing preliminary concepts of optimization theory such as metric spaces, derivatives, and the Lagrange multiplier technique for finding extrema of real valued functions. The focus then shifts to the special case of optimizing a linear function over a region determined by affine constraints, namely linear programming. Highlights include careful derivations and applications of the simplex algorithm, the dual-simplex algorithm, and the primal-dual algorithm. The theoretical heart of this book is the mathematically rigorous presentation of various nonlinear optimization methods, including but not limited to gradient decent, the Karush-Kuhn-Tucker (KKT) conditions, Lagrangian duality, alternating direction method of multipliers (ADMM), and the kernel method. These methods are carefully applied to hard margin SVM, soft margin SVM, kernel PCA, ridge regression, lasso regression, and elastic-net regression. Matlab programs implementing these methods are included.


Linear Algebra And Optimization With Applications To Machine Learning - Volume Ii: Fundamentals Of Optimization Theory With Applications To Machine Learning

Linear Algebra And Optimization With Applications To Machine Learning - Volume Ii: Fundamentals Of Optimization Theory With Applications To Machine Learning
Author: Quaintance Jocelyn
Publisher: World Scientific
Total Pages: 896
Release: 2020-03-16
Genre: Mathematics
ISBN: 9811216584

Download Linear Algebra And Optimization With Applications To Machine Learning - Volume Ii: Fundamentals Of Optimization Theory With Applications To Machine Learning Book in PDF, ePub and Kindle

Volume 2 applies the linear algebra concepts presented in Volume 1 to optimization problems which frequently occur throughout machine learning. This book blends theory with practice by not only carefully discussing the mathematical under pinnings of each optimization technique but by applying these techniques to linear programming, support vector machines (SVM), principal component analysis (PCA), and ridge regression. Volume 2 begins by discussing preliminary concepts of optimization theory such as metric spaces, derivatives, and the Lagrange multiplier technique for finding extrema of real valued functions. The focus then shifts to the special case of optimizing a linear function over a region determined by affine constraints, namely linear programming. Highlights include careful derivations and applications of the simplex algorithm, the dual-simplex algorithm, and the primal-dual algorithm. The theoretical heart of this book is the mathematically rigorous presentation of various nonlinear optimization methods, including but not limited to gradient decent, the Karush-Kuhn-Tucker (KKT) conditions, Lagrangian duality, alternating direction method of multipliers (ADMM), and the kernel method. These methods are carefully applied to hard margin SVM, soft margin SVM, kernel PCA, ridge regression, lasso regression, and elastic-net regression. Matlab programs implementing these methods are included.


Linear Algebra and Optimization with Applications to Machine Learning - Volume I: Linear Algebra for Computer Vision, Robotics, and Machine Learning

Linear Algebra and Optimization with Applications to Machine Learning - Volume I: Linear Algebra for Computer Vision, Robotics, and Machine Learning
Author: Jean H. Gallier
Publisher: World Scientific Publishing Company
Total Pages: 550
Release: 2020-01-15
Genre: Mathematics
ISBN: 9789811207716

Download Linear Algebra and Optimization with Applications to Machine Learning - Volume I: Linear Algebra for Computer Vision, Robotics, and Machine Learning Book in PDF, ePub and Kindle

This book provides the mathematical fundamentals of linear algebra to practicers in computer vision, machine learning, robotics, applied mathematics, and electrical engineering. By only assuming a knowledge of calculus, the authors develop, in a rigorous yet down to earth manner, the mathematical theory behind concepts such as: vectors spaces, bases, linear maps, duality, Hermitian spaces, the spectral theorems, SVD, and the primary decomposition theorem. At all times, pertinent real-world applications are provided. This book includes the mathematical explanations for the tools used which we believe that is adequate for computer scientists, engineers and mathematicians who really want to do serious research and make significant contributions in their respective fields.


Homology, Cohomology, And Sheaf Cohomology For Algebraic Topology, Algebraic Geometry, And Differential Geometry

Homology, Cohomology, And Sheaf Cohomology For Algebraic Topology, Algebraic Geometry, And Differential Geometry
Author: Jean H Gallier
Publisher: World Scientific
Total Pages: 799
Release: 2022-01-19
Genre: Mathematics
ISBN: 9811245045

Download Homology, Cohomology, And Sheaf Cohomology For Algebraic Topology, Algebraic Geometry, And Differential Geometry Book in PDF, ePub and Kindle

For more than thirty years the senior author has been trying to learn algebraic geometry. In the process he discovered that many of the classic textbooks in algebraic geometry require substantial knowledge of cohomology, homological algebra, and sheaf theory. In an attempt to demystify these abstract concepts and facilitate understanding for a new generation of mathematicians, he along with co-author wrote this book for an audience who is familiar with basic concepts of linear and abstract algebra, but who never has had any exposure to the algebraic geometry or homological algebra. As such this book consists of two parts. The first part gives a crash-course on the homological and cohomological aspects of algebraic topology, with a bias in favor of cohomology. The second part is devoted to presheaves, sheaves, Cech cohomology, derived functors, sheaf cohomology, and spectral sequences. All important concepts are intuitively motivated and the associated proofs of the quintessential theorems are presented in detail rarely found in the standard texts.


An Introduction to Optimization

An Introduction to Optimization
Author: Edwin K. P. Chong
Publisher: John Wiley & Sons
Total Pages: 677
Release: 2023-10-03
Genre: Business & Economics
ISBN: 1119877636

Download An Introduction to Optimization Book in PDF, ePub and Kindle

An Introduction to Optimization Accessible introductory textbook on optimization theory and methods, with an emphasis on engineering design, featuring MATLAB exercises and worked examples Fully updated to reflect modern developments in the field, the Fifth Edition of An Introduction to Optimization fills the need for an accessible, yet rigorous, introduction to optimization theory and methods, featuring innovative coverage and a straightforward approach. The book begins with a review of basic definitions and notations while also providing the related fundamental background of linear algebra, geometry, and calculus. With this foundation, the authors explore the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. In addition, the book includes an introduction to artificial neural networks, convex optimization, multi-objective optimization, and applications of optimization in machine learning. Numerous diagrams and figures found throughout the book complement the written presentation of key concepts, and each chapter is followed by MATLAB® exercises and practice problems that reinforce the discussed theory and algorithms. The Fifth Edition features a new chapter on Lagrangian (nonlinear) duality, expanded coverage on matrix games, projected gradient algorithms, machine learning, and numerous new exercises at the end of each chapter. An Introduction to Optimization includes information on: The mathematical definitions, notations, and relations from linear algebra, geometry, and calculus used in optimization Optimization algorithms, covering one-dimensional search, randomized search, and gradient, Newton, conjugate direction, and quasi-Newton methods Linear programming methods, covering the simplex algorithm, interior point methods, and duality Nonlinear constrained optimization, covering theory and algorithms, convex optimization, and Lagrangian duality Applications of optimization in machine learning, including neural network training, classification, stochastic gradient descent, linear regression, logistic regression, support vector machines, and clustering. An Introduction to Optimization is an ideal textbook for a one- or two-semester senior undergraduate or beginning graduate course in optimization theory and methods. The text is also of value for researchers and professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.


Linear Algebra and Optimization for Machine Learning

Linear Algebra and Optimization for Machine Learning
Author: Charu C. Aggarwal
Publisher: Springer Nature
Total Pages: 507
Release: 2020-05-13
Genre: Computers
ISBN: 3030403440

Download Linear Algebra and Optimization for Machine Learning Book in PDF, ePub and Kindle

This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.


Optimization Theory with Applications

Optimization Theory with Applications
Author: Donald A. Pierre
Publisher: Courier Corporation
Total Pages: 644
Release: 2012-07-12
Genre: Mathematics
ISBN: 0486136957

Download Optimization Theory with Applications Book in PDF, ePub and Kindle

Broad-spectrum approach to important topic. Explores the classic theory of minima and maxima, classical calculus of variations, simplex technique and linear programming, optimality and dynamic programming, more. 1969 edition.


Mathematics for Machine Learning

Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
Total Pages: 392
Release: 2020-04-23
Genre: Computers
ISBN: 1108569323

Download Mathematics for Machine Learning Book in PDF, ePub and Kindle

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.


An Introduction to Optimization with Applications in Machine Learning and Data Analytics

An Introduction to Optimization with Applications in Machine Learning and Data Analytics
Author: Jeffrey Paul Wheeler
Publisher: CRC Press
Total Pages: 475
Release: 2023-12-07
Genre: Mathematics
ISBN: 1003803598

Download An Introduction to Optimization with Applications in Machine Learning and Data Analytics Book in PDF, ePub and Kindle

The primary goal of this text is a practical one. Equipping students with enough knowledge and creating an independent research platform, the author strives to prepare students for professional careers. Providing students with a marketable skill set requires topics from many areas of optimization. The initial goal of this text is to develop a marketable skill set for mathematics majors as well as for students of engineering, computer science, economics, statistics, and business. Optimization reaches into many different fields. This text provides a balance where one is needed. Mathematics optimization books are often too heavy on theory without enough applications; texts aimed at business students are often strong on applications, but weak on math. The book represents an attempt at overcoming this imbalance for all students taking such a course. The book contains many practical applications but also explains the mathematics behind the techniques, including stating definitions and proving theorems. Optimization techniques are at the heart of the first spam filters, are used in self-driving cars, play a great role in machine learning, and can be used in such places as determining a batting order in a Major League Baseball game. Additionally, optimization has seemingly limitless other applications in business and industry. In short, knowledge of this subject offers an individual both a very marketable skill set for a wealth of jobs as well as useful tools for research in many academic disciplines. Many of the problems rely on using a computer. Microsoft’s Excel is most often used, as this is common in business, but Python and other languages are considered. The consideration of other programming languages permits experienced mathematics and engineering students to use MATLAB® or Mathematica, and the computer science students to write their own programs in Java or Python.