Lattice Boltzmann Simulation Of Laminar And Turbulent Two Phase Flows PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Lattice Boltzmann Simulation Of Laminar And Turbulent Two Phase Flows PDF full book. Access full book title Lattice Boltzmann Simulation Of Laminar And Turbulent Two Phase Flows.

Two-Phase Flow

Two-Phase Flow
Author: Cl Kleinstreuer
Publisher: Routledge
Total Pages: 472
Release: 2017-11-01
Genre: Science
ISBN: 1351406485

Download Two-Phase Flow Book in PDF, ePub and Kindle

This graduate text provides a unified treatment of the fundamental principles of two-phase flow and shows how to apply the principles to a variety of homogeneous mixture as well as separated liquid-liquid, gas-solid, liquid-solid, and gas-liquid flow problems, which may be steady or transient, laminar or turbulent.Each chapter contains several sample problems, which illustrate the outlined theory and provide approaches to find simplified analytic descriptions of complex two-phase flow phenomena.This well-balanced introductory text will be suitable for advanced seniors and graduate students in mechanical, chemical, biomedical, nuclear, environmental and aerospace engineering, as well as in applied mathematics and the physical sciences. It will be a valuable reference for practicing engineers and scientists. A solutions manual is available to qualified instructors.


Lattice-Gas Cellular Automata and Lattice Boltzmann Models

Lattice-Gas Cellular Automata and Lattice Boltzmann Models
Author: Dieter A. Wolf-Gladrow
Publisher: Springer
Total Pages: 320
Release: 2004-10-19
Genre: Mathematics
ISBN: 3540465863

Download Lattice-Gas Cellular Automata and Lattice Boltzmann Models Book in PDF, ePub and Kindle

Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.


Multiple-relaxation-time Lattice Boltzmann Simulations of Turbulent Pipe Flows

Multiple-relaxation-time Lattice Boltzmann Simulations of Turbulent Pipe Flows
Author: Harish Opadrishta
Publisher:
Total Pages: 65
Release: 2016
Genre: Laminar flow
ISBN: 9781369353617

Download Multiple-relaxation-time Lattice Boltzmann Simulations of Turbulent Pipe Flows Book in PDF, ePub and Kindle

Turbulent pipe flows are encountered in a multitude of engineering applications. Some of the examples include removal of moisture, odors, and other harmful gases using exhaust pipes; transporting crude oil and cooling water in oil reneries; circulation of coolants through the engine in automobiles and motorcycles; etc. They have been studied experimentally for more than a century and by direct numerical simulations (DNS) for more than two decades. Over the past twenty years, there has been an increase in the involvement of computation in studying turbulent flows, including turbulent pipe flows. The low cost and time consumption of computer simulations, along with the ability to study complex dynamic processes that are practically intractable at all scales, have resulted in the increase in their use in research. At the same time, the presence of curved boundary remains a challenge for accurate DNS of this simple flow. ☐ In the recent past, lattice Boltzmann method (LBM) has emerged as an attractive option for simulating wall-bounded turbulent flows. It offers several advantages compared to the conventional models of computational fluid dynamics, due to the local nature of operations involved and easy implementation of boundary conditions. Despite the advantages posed by the LBM, no DNS of turbulent pipe flow has been reported using LBM. Hence, the objective of this study is to develop a lattice Boltzmann model to simulate turbulent pipe flow and implement it into a computer code using FORTRAN and MPI. This code is then used to simulate fully developed turbulent pipe flow and validate the results with the existing benchmark data. ☐ In this thesis, the lattice Boltzmann model in three spatial dimensions using 27 mesoscopic velocities on a cubic grid was designed using an "inverse design" analysis. Yu et al.'s double interpolation scheme was used to satisfy the no-slip condition at the solid-liquid interface. ☐ The code was first validated by simulating laminar channel and pipe flows. The profiles of streamwise velocity for the laminar pipe and channel flow simulations were observed to be in excellent agreement with the analytical results. Further, the results of the time evolution of the centerline streamwise velocity for the laminar pipe and channel flow also matched the analytical results. Hence, the validity and accuracy of the code was established. ☐ Turbulent pipe flow was then simulated using the D3Q27 model. The first and second order statistics of the turbulent pipe flow simulation from the D3Q27, D3Q19 model were compared with the reference data being obtained from the spectral and finite volume discretizations of the Navier-Stokes equation. The mean velocity profiles of the D3Q27 simulation matched well with the reference data. On the other hand, the D3Q19 model under-predicts the mean velocity, especially near the center. In addition, the contours of the streamwise velocity for the D3Q19 simulation showed a certain preference along particular directions. This was not observed in the D3Q27 simulation. The erroneous results of the D3Q19 model could be explained by the hypothesis stated in White et al., stating that the presence of "defective planes" could be a plausible reason for the errors in the measurement of streamwise velocity in the D3Q19 model. Hence, the D3Q27 model seems like a suitable option to simulate wall-bounded turbulent flows with a curved boundary. The only drawback to using the D3Q27 model is its slower execution speed as it takes 21% more CPU time than the D3Q19 model.


Lattice Boltzmann Modeling

Lattice Boltzmann Modeling
Author: Michael C. Sukop
Publisher: Springer Science & Business Media
Total Pages: 178
Release: 2007-04-05
Genre: Science
ISBN: 3540279822

Download Lattice Boltzmann Modeling Book in PDF, ePub and Kindle

Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.


The Lattice Boltzmann Method

The Lattice Boltzmann Method
Author: Timm Krüger
Publisher: Springer
Total Pages: 705
Release: 2016-11-07
Genre: Science
ISBN: 3319446495

Download The Lattice Boltzmann Method Book in PDF, ePub and Kindle

This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.


Lattice Boltzmann Method And Its Application In Engineering

Lattice Boltzmann Method And Its Application In Engineering
Author: Zhaoli Guo
Publisher: World Scientific
Total Pages: 419
Release: 2013-03-25
Genre: Technology & Engineering
ISBN: 9814508314

Download Lattice Boltzmann Method And Its Application In Engineering Book in PDF, ePub and Kindle

Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh.This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions.With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method.


Modelling and Experimentation in Two-Phase Flow

Modelling and Experimentation in Two-Phase Flow
Author: Volfango Bertola
Publisher: Springer
Total Pages: 433
Release: 2014-05-04
Genre: Technology & Engineering
ISBN: 3709125383

Download Modelling and Experimentation in Two-Phase Flow Book in PDF, ePub and Kindle

This is an up-to-date review of recent advances in the study of two-phase flows, with focus on gas-liquid flows, liquid-liquid flows, and particle transport in turbulent flows. The book is divided into several chapters, which after introducing basic concepts lead the reader through a more complex treatment of the subjects. The reader will find an extensive review of both the older and the more recent literature, with abundance of formulas, correlations, graphs and tables. A comprehensive (though non exhaustive) list of bibliographic references is provided at the end of each chapter. The volume is especially indicated for researchers who would like to carry out experimental, theoretical or computational work on two-phase flows, as well as for professionals who wish to learn more about this topic.