Laser Diagnostics Applied To Practical Combustion And Flow Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Laser Diagnostics Applied To Practical Combustion And Flow Systems PDF full book. Access full book title Laser Diagnostics Applied To Practical Combustion And Flow Systems.

2009 Laser Diagnostics in Combustion GRC.

2009 Laser Diagnostics in Combustion GRC.
Author:
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:

Download 2009 Laser Diagnostics in Combustion GRC. Book in PDF, ePub and Kindle

Non-intrusive laser diagnostics for the spatially and temporally resolved measurement of temperature, chemical composition, and flow parameters have emerged over the last few decades as major tools for the study of both fundamental and applied combustion science. Many of the important advances in the field can be attributed to the discussions and ideas emanating from this meeting. This conference, originating in 1981 and held biennially, focuses on laser-based methods for measurement of both macroscopic parameters and the underlying microscale physical and chemical processes. Applications are discussed primarily to elucidate new chemical and physical issues and/or interferences that need to be addressed to improve the accuracy and precision of the various diagnostic approaches or to challenge the community of diagnosticians to invent new measurement techniques. Combustion environments present special challenges to the optical diagnostics community as they address measurements relevant to turbulence, spray and mixture formation, or turbulence/chemistry interactions important in practical combustion systems as well as fundamental chemical reactions in stationary laminar flames. The diagnostics considered may be generally classed as being incoherent, where the signals are radiated isotropically, or coherent, where the signals are generated in a directed, beam-like fashion. Both of the foregoing may employ either electronic or Raman resonance enhancement or a combination of both. Prominent incoherent approaches include laser induced fluorescence (LIF), spontaneous Raman scattering, Rayleigh scattering, laser induced incandescence, molecular flow tagging, and Mie scattering and their two- and three-dimensional imaging variants. Coherent approaches include coherent anti-Stokes Raman scattering (CARS), degenerate four wave mixing (DFWM), polarization spectroscopy (PS), laser induced grating spectroscopy (LIGS) and laser-based absorption spectroscopy. Spectroscopic modelling and validation are key elements to extract accurate parameter measurements and discussions focusing on key energy transfer processes, collisional models, and lineshapes. The properties and behaviour of lasers, optical arrangements and techniques, spectrally-selective and dispersive instruments and detectors are also important determinants of successful measurements and are discussed in detail. Recent developments in the conference have highlighted the application of techniques developed for combustion research that find application in other areas such as biological, atmospheric, chemical engineering or plasma processes.


Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines

Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines
Author: Hua Zhao
Publisher: SAE International
Total Pages: 373
Release: 2012-07-30
Genre: Technology & Engineering
ISBN: 0768057825

Download Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines Book in PDF, ePub and Kindle

The increasing concern about CO2 emissions and energy prices has led to new CO2 emission and fuel economy legislation being introduced in world regions served by the automotive industry. In response, automotive manufacturers and Tier-1 suppliers are developing a new generation of internal combustion (IC) engines with ultra-low emissions and high fuel efficiency. To further this development, a better understanding is needed of the combustion and pollutant formation processes in IC engines. As efficiency and emission abatement processes have reached points of diminishing returns, there is more of a need to make measurements inside the combustion chamber, where the combustion and pollutant formation processes take place. However, there is currently no good overview of how to make these measurements. Based on the author’s previous SAE book, Engine Combustion Instrumentation and Diagnostics, this book focuses on laser-based optical techniques for combustion flows and in-cylinder measurements. Included are new chapters on optical engines and optical equipment, case studies, and an updated description of each technique. The purpose of this book is to provide, in one publication, an introduction to experimental techniques that are best suited for in-cylinder engine combustion measurements. It provides sufficient details for readers to set up and apply these techniques to IC engines and combustion flows.


Industrial Applications of Laser Diagnostics

Industrial Applications of Laser Diagnostics
Author: Yoshihiro Deguchi
Publisher: Taylor & Francis
Total Pages: 301
Release: 2016-04-19
Genre: Science
ISBN: 1439853398

Download Industrial Applications of Laser Diagnostics Book in PDF, ePub and Kindle

Tighter regulations of harmful substances such as NOx, CO, heavy metals, particles, emissions from commercial plants and automobiles reflect a growing demand for lowering the anthropogenic burdens on the environment. It is equally important to monitor controlling factors to improve the operation of industrial machinery and plants. Among the many me


Laser Diagnostics for High Pressure Combustion

Laser Diagnostics for High Pressure Combustion
Author: David Escofet-Martin
Publisher:
Total Pages: 130
Release: 2017
Genre:
ISBN: 9780355413922

Download Laser Diagnostics for High Pressure Combustion Book in PDF, ePub and Kindle

Laser diagnostics have been a staple for experimental combustion research as a modern tool to evaluate high temperature reacting flow environments and to contribute to the fundamental knowledge needed for improving our current combustion systems in a non-intrusive way; they also represent an essential tool for validating computational models. High pressure diagnostics are of particular importance due to the fact that the majority of practical combustion systems operate at high pressure, involving increased challenges in the measurements. The current work examines a variety of linear and non-linear light/matter interaction processes (Raman, fluorescence, and coherent anti-Stokes Raman spectroscopy or CARS) with the goal of measuring the temperature, pressure, and spatial distribution of important reacting flow species. The specific techniques involving OH planar laser induced fluorescence (PLIF), two-line OH PLIF thermometry, two-photon CO PLIF, nanosecond vibrational CARS and hybrid femtosecond/picosecond rotational CARS are all demonstrated at atmospheric pressure using a non-premixed coflow impinging jet as a study flame and examined in detail under high pressure conditions (up to 12 bar) as a coflow flame and in a calibration high pressure vessel; the implications of pressure are discussed in detail in the linear and non-linear techniques. The high pressure experimental data set shows soot laser induced incandescence (LII) as a source of interference for high pressure LIF in non-premixed flames, good agreement with 3 different chemical mechanisms, in particular at high pressure, between an OpenFOAM simulated fluorescence and the experimental pressure dependent data regarding both the spatial distribution of the OH molecule and the overall number of $OH$ molecules interacting with the excitation source. Chirp is identified as a critical parameter when using a second harmonic bandwidth compressor in the hybrid fs/ps CARS configuration, and the chirped CARS signal depends strongly on probe delay in N2 experiments. High quality high pressure data can be achieved once chirp influence has been quantified accurately. Together the combination of diagnostics studied provide insights into high pressure laser diagnostics challenges beyond what is currently available.