Large Less Than Or Equal To 112 Kda Protein Characterization By Electrospray Ionization Fourier Transform Mass Spectrometry PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Large Less Than Or Equal To 112 Kda Protein Characterization By Electrospray Ionization Fourier Transform Mass Spectrometry PDF full book. Access full book title Large Less Than Or Equal To 112 Kda Protein Characterization By Electrospray Ionization Fourier Transform Mass Spectrometry.

Characterization of Protein Therapeutics using Mass Spectrometry

Characterization of Protein Therapeutics using Mass Spectrometry
Author: Guodong Chen
Publisher: Springer Science & Business Media
Total Pages: 408
Release: 2014-07-08
Genre: Science
ISBN: 1441978623

Download Characterization of Protein Therapeutics using Mass Spectrometry Book in PDF, ePub and Kindle

This book highlights current approaches and future trends in the use of mass spectrometry to characterize protein therapies. As one of the most frequently utilized analytical techniques in pharmaceutical research and development, mass spectrometry has been widely used in the characterization of protein therapeutics due to its analytical sensitivity, selectivity, and specificity. This book begins with an overview of mass spectrometry techniques as related to the analysis of protein therapeutics, structural identification strategies, quantitative approaches, followed by studies involving characterization of process related protein drug impurities/degradants, metabolites, higher order structures of protein therapeutics. Both general practitioners in pharmaceutical research and specialists in analytical sciences will benefit from this book that details step-by-step approaches and new strategies to solve challenging problems related to protein therapeutics research and development.


Supercharging Methods for Improving Analysis and Detection of Proteins by Electrospray Ionization Mass Spectrometry

Supercharging Methods for Improving Analysis and Detection of Proteins by Electrospray Ionization Mass Spectrometry
Author: Catherine Cassou Going
Publisher:
Total Pages: 155
Release: 2015
Genre:
ISBN:

Download Supercharging Methods for Improving Analysis and Detection of Proteins by Electrospray Ionization Mass Spectrometry Book in PDF, ePub and Kindle

The characterization of mechanisms, analytical benefits, and applications of two different methods for producing high charge state protein ions in electrospray ionization (ESI) mass spectrometry (MS), or "supercharging", are presented in this dissertation. High charge state protein ions are desirable in tandem MS due to their higher fragmentation efficiency and thus greater amount of sequence information that can be obtained from them. The first supercharging method, supercharging with reagents (typically non-volatile organic molecules), is shown in this work to be able to produce such highly charged protein ions from denaturing solutions that about one in every three residues carries a charge. The high Coulomb repulsion in these ions results in these ions adopting near-linear gas-phase structures with little to no non-covalent interactions, making them ideal for efficient fragmentation in tandem MS experiments and for the minimization of gas phase HD scrambling during tandem MS. Supercharging with reagents from aqueous solutions typically produces much lower charge states as compared to that observed from a denaturing solution. However, two new reagents are presented in this work that increase protein ion charge past that from denaturing solutions when added to aqueous solutions at just 2% by volume. Increases in charge of up to 168% are reported in the presence of these reagents. The mechanism of the increases in protein ion charging with these reagents from aqueous solutions was investigated with fluorescence experiments and correlated to a destabilization of the protein structure by these reagents toward denaturation. The actual protein denaturation event likely occurs in the ESI droplet itself, consistent with previous studies of the mechanism of supercharging with reagents. Thus, efficient tandem MS of high charge states is possible from ESI of aqueous solutions in which a protein maintains its native or native-like structure and activity, enabling tandem MS analysis of protein modifications, ligand binding, or structural changes in real time. Interestingly, another application for supercharging reagents is protein desalting in the ESI droplet. Supercharging reagents bind to sodium ions, resulting in less non-specific sodium ion adduction to proteins, which can improve signal-to-noise ratios of protein ions, lower limits of detection, and enable the detection of bound ligands or specific binding of salts that might otherwise be obscured by sodium adduction. The second supercharging method, electrothermal supercharging (ETS), requires the presence of particular buffer salts rather than organic reagents to increase protein ion charge in the ESI droplet. An investigation of the effect of several different buffer salts on ETS is presented in this work, revealing that the choice of buffer salt is very important to obtaining effective ETS and that buffer salts likely stabilize or destabilize protein structure in the ESI droplet via Hofmeister effects. The application of ETS to tandem MS of proteins produced by ESI and its utility on proteins ranging in size over an order of magnitude (8.6 kDa to 83.0 kDa) is demonstrated. Hydrogen-deuterium exchange experiments can be performed in aqueous solutions and measured continuously with ETS coupled to tandem MS for protein structure analysis in real time with a spatial resolution of 1.3 residues and without gas phase hydrogen-deuterium scrambling. This work demonstrates the wide applicability of ETS for the study of primary and higher order protein structure for small and large proteins alike.


Protein Analysis using Mass Spectrometry

Protein Analysis using Mass Spectrometry
Author: Mike S. Lee
Publisher: John Wiley & Sons
Total Pages: 282
Release: 2017-05-26
Genre: Science
ISBN: 1119359368

Download Protein Analysis using Mass Spectrometry Book in PDF, ePub and Kindle

Presents Practical Applications of Mass Spectrometry for Protein Analysis and Covers Their Impact on Accelerating Drug Discovery and Development Covers both qualitative and quantitative aspects of Mass Spectrometry protein analysis in drug discovery Principles, Instrumentation, Technologies topics include MS of peptides, proteins, and ADCs , instrumentation in protein analysis, nanospray technology in MS protein analysis, and automation in MS protein analysis Details emerging areas from drug monitoring to patient care such as Identification and validation of biomarkers for cancer, targeted MS approaches for biomarker validation, biomarker discovery, and regulatory perspectives Brings together the most current advances in the mass spectrometry technology and related method in protein analysis


Enhanced Protein Characterization Through Selective Derivatization and Electrospray Ionization Tandem Mass Spectrometry

Enhanced Protein Characterization Through Selective Derivatization and Electrospray Ionization Tandem Mass Spectrometry
Author: Lisa Anne Vasicek
Publisher:
Total Pages: 338
Release: 2011
Genre:
ISBN:

Download Enhanced Protein Characterization Through Selective Derivatization and Electrospray Ionization Tandem Mass Spectrometry Book in PDF, ePub and Kindle

There continue to be great strides in the field of proteomics but as samples become more complex, the ability to increase sequence coverage and confidence in the identification becomes more important. Several methods of derivatization have been developed that can be used in combination with tandem mass spectrometry to identify and characterize proteins. Three types of activation, including infrared multiphoton dissociation, ultraviolet photodissociation, and electron transfer dissociation, are enhanced in this dissertation and compared to the conventional method of collisional induced dissociation (CID) to demonstrate the improved characterization of proteins. A free amine reactive phosphate group was synthesized and used to modify the N-terminus of digested peptides. This phosphate group absorbs at the IR wavelength of 10.6 [mu]m as well as the Vacuum-ultraviolet (VUV) due to an aromatic group allowing modified peptides to be dissociated by infrared multi-photon dissociation (IRMPD) or ultraviolet photodissociation (UVPD) whereas peptides without this chromophore are less responsive to IR or UV irradiation. The PD spectra for these modified peptides yield simplified MS/MS spectra due to the neutralization of all N-terminal product ions from the incorporation the negatively charged phosphate moiety. This is especially advantageous for UVPD due to the great number of product ions produced due to the higher energy deposition of the UV photons. The MS/MS spectra also produce higher sequence coverage in comparison to CID of the modified or unmodified peptides due to more informative fragmentation pathways generated upon PD from secondary dissociation and an increased ion trapping mass range. IRMPD is also implemented for the first time on an orbitrap mass spectrometer to achieve high resolution analysis of IR chromophore-derivatized samples as well as top-down analysis of unmodified proteins. High resolution/high mass accuracy analysis is extremely beneficial for characterization of complex samples due to the likelihood of false positives at lower resolutions/accuracies. For electron transfer dissociation, precursor ions in higher charge states undergo more exothermic electron transfer and thus minimize non-dissociative charge reduction. In this dissertation, cysteine side chains are alkylated with a fixed charge to deliberately increase the charge states of peptides and improve electron transfer dissociation. ETD can also be used to study protein structure by derivatizing the intact structure with a hydrazone reagent. A hydrazone bond will be preferentially cleaved during ETD facilitating the recognition of any modified residues through a distinguishing ETD fragmentation spectrum.


Microcharacterization of Proteins

Microcharacterization of Proteins
Author: Roland Kellner
Publisher: John Wiley & Sons
Total Pages: 346
Release: 2008-09-26
Genre: Science
ISBN: 3527613978

Download Microcharacterization of Proteins Book in PDF, ePub and Kindle

Proteomics - the analysis of the whole set of proteins and their functions in a cell - is based on the revolutionary developments which have been achieved in protein analysis during the last years. The number of finished genome projects is growing and in parallel there is a dramatically increasing need to identify the products of revealed genes. Acting on a micro level modern protein chemistry increases our understanding of biological events by elucidating the relevant structure-function relationships. The second edition of the successful title Microcharacterization of Proteins presents a current overview of modern protein analysis: From sample preparation to sequence analysis, mass spectrometry and bioinformatics it informs about the tools needed in protein research. This makes the book indispensable for everyone involved in proteomics!


Development of Tandem Mass Spectrometric Methods for Proteome Analysis Utilizing Photodissociation and Ion/ion Reactions

Development of Tandem Mass Spectrometric Methods for Proteome Analysis Utilizing Photodissociation and Ion/ion Reactions
Author: Jared Bryan Shaw
Publisher:
Total Pages: 366
Release: 2013
Genre:
ISBN:

Download Development of Tandem Mass Spectrometric Methods for Proteome Analysis Utilizing Photodissociation and Ion/ion Reactions Book in PDF, ePub and Kindle

The utility of 193 nm ultraviolet photodissociation (UVPD) and negative electron transfer dissociation (NETD) for the characterization of peptide anions was systematically evaluated. UVPD outperformed NETD in nearly all metrics; however, both methods provided complementary information to traditional collision induced dissociation (CID) of peptide cations in high throughput analyses. In order to enhance the performance of NETD, activated ion negative electron transfer dissociation (AI-NETD) methods were developed and characterized. The use of low-level infrared photoactivation or collisional activation during the NETD reaction period significantly improved peptide anion sequencing capabilities compared to NETD alone. Tyrosine deprotonation was shown to yield preferential electron detachment upon NETD or UVPD, resulting in N - C[alpha] bond cleavage N-terminal to the tyrosine residue. LC-MS/MS analysis of a tryptic digest of BSA demonstrated that these cleavages were regularly observed under high pH conditions. Transmission mode desorption electrospray ionization (TM-DESI) was coupled with 193 nm UVPD and CID for the rapid analysis and identification of protein digests. Comparative results are presented for TM-DESI-MS/CID and TM-DESI-MS/UVPD analyses of five proteolyzed model proteins. In some cases TM-DESI/UVPD outperformed TM-DESI-MS/CID due to the production of an extensive array of sequence ions and the ability to detect low m/z product ions. 193 nm UVPD was implemented in an Orbitrap mass spectrometer for characterization of intact proteins. Near-complete fragmentation of proteins up to 29 kDa was achieved. The high-energy activation afforded by UVPD exhibited far less precursor ion charge state dependence than conventional methods, and the viability of 193 nm UVPD for high throughput top-down proteomics analyses was demonstrated for the less 30 kDa protein from a fractionated yeast cell lysate. The use of helium instead of nitrogen as the C-trap and HCD cell bath gas and trapping ions in the HCD cell prior to high resolution mass analysis significantly reduced the signal decay rate for large protein ions. As a result, monoclonal IgG1 antibody was isotopically resolved and mass accurately determined. A new high mass record for which accurate mass and isotopic resolution has been achieved (148,706.3391 Da ± 3.1 ppm) was established.


Principles of Mass Spectrometry Applied to Biomolecules

Principles of Mass Spectrometry Applied to Biomolecules
Author: Chava Lifshitz
Publisher: John Wiley & Sons
Total Pages: 707
Release: 2006-10-27
Genre: Science
ISBN: 0470050411

Download Principles of Mass Spectrometry Applied to Biomolecules Book in PDF, ePub and Kindle

An extensive compilation of articles by leading professionals, this reference explains the fundamental principles of mass spectrometry as they relate to the life sciences. Topics covered include spectroscopy, energetics and mechanisms of peptide fragmentation, electron capture dissociation, ion-ion and ion-molecule reactions, reaction dynamics, collisional activation, soft-landing, protein structure and interactions, thermochemistry, and more. The book empowers readers to develop new ways of using these techniques.