Land Surface Observation Modeling And Data Assimilation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Land Surface Observation Modeling And Data Assimilation PDF full book. Access full book title Land Surface Observation Modeling And Data Assimilation.

Land Surface Observation, Modeling And Data Assimilation

Land Surface Observation, Modeling And Data Assimilation
Author: Shunlin Liang
Publisher: World Scientific
Total Pages: 491
Release: 2013-09-23
Genre: Science
ISBN: 981447262X

Download Land Surface Observation, Modeling And Data Assimilation Book in PDF, ePub and Kindle

This book is unique in its ambitious and comprehensive coverage of earth system land surface characterization, from observation and modeling to data assimilation, including recent developments in theory and techniques, and novel application cases. The contributing authors are active research scientists, and many of them are internationally known leading experts in their areas, ensuring that the text is authoritative.This book comprises four parts that are logically connected from data, modeling, data assimilation integrating data and models to applications. Land data assimilation is the key focus of the book, which encompasses both theoretical and applied aspects with various novel methodologies and applications to the water cycle, carbon cycle, crop monitoring, and yield estimation.Readers can benefit from a state-of-the-art presentation of the latest tools and their usage for understanding earth system processes. Discussions in the book present and stimulate new challenges and questions facing today's earth science and modeling communities.


Land Surface Observation, Modeling and Data Assimilation

Land Surface Observation, Modeling and Data Assimilation
Author: Shunlin Liang
Publisher: World Scientific
Total Pages: 491
Release: 2013
Genre: Science
ISBN: 9814472611

Download Land Surface Observation, Modeling and Data Assimilation Book in PDF, ePub and Kindle

This book is unique in its ambitious and comprehensive coverage of earth system land surface characterization, from observation and modeling to data assimilation, including recent developments in theory and techniques, and novel application cases. The contributing authors are active research scientists, and many of them are internationally known leading experts in their areas, ensuring that the text is authoritative.This book comprises four parts that are logically connected from data, modeling, data assimilation integrating data and models to applications. Land data assimilation is the key focus of the book, which encompasses both theoretical and applied aspects with various novel methodologies and applications to the water cycle, carbon cycle, crop monitoring, and yield estimation.Readers can benefit from a state-of-the-art presentation of the latest tools and their usage for understanding earth system processes. Discussions in the book present and stimulate new challenges and questions facing today''s earth science and modeling communities.


Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)

Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)
Author: Seon Ki Park
Publisher: Springer Science & Business Media
Total Pages: 736
Release: 2013-05-22
Genre: Science
ISBN: 3642350887

Download Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II) Book in PDF, ePub and Kindle

This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.


Hyper-Resolution Global Land Surface Model at Regional-to-Local Scales with Observed Groundwater Data Assimilation

Hyper-Resolution Global Land Surface Model at Regional-to-Local Scales with Observed Groundwater Data Assimilation
Author: Raj Shekhar Singh
Publisher:
Total Pages: 119
Release: 2014
Genre:
ISBN:

Download Hyper-Resolution Global Land Surface Model at Regional-to-Local Scales with Observed Groundwater Data Assimilation Book in PDF, ePub and Kindle

Modeling groundwater is challenging: it is not readily visible and is difficult to measure, with limited sets of observations available. Even though groundwater models can reproduce water table and head variations, considerable drift in modeled land surface states can nonetheless result from partially known geologic structure, errors in the input forcing fields, and imperfect Land Surface Model (LSM) parameterizations. These models frequently have biased results that are very different from observations. While many hydrologic groups are grappling with developing better models to resolve these issues, it is also possible to make models more robust through data assimilation of observation groundwater data. The goal of this project is to develop a methodology for high-resolution land surface model runs over large spatial region and improve hydrologic modeling through observation data assimilation, and then to apply this methodology to improve groundwater monitoring and banking. The high-resolution LSM modeling in this dissertation shows that model physics performs well at these resolutions and actually leads to better modeling of water/energy budget terms. The overarching goal of assimilation methodology is to resolve the critical issue of how to improve groundwater modeling in LSMs that lack sub-surface parameterizations and also run them on global scales. To achieve this, the research in this dissertation has been divided into three parts. The first goal was to run a commonly used land surface model at hyper resolution (1 km or finer) and show that this improves the modeling results without breaking the model. The second goal was to develop an observation data assimilation methodology to improve the high-resolution model. The third was to show real-world applications of this methodology. The need for improved accuracy is currently driving the development of hyper-resolution land surface models that can be implemented at a continental scale with resolutions of 1 km or finer. In Chapter 2, I describe our research incorporating fine-scale grid resolutions and surface data into the National Center for Atmospheric Research (NCAR) Community Land Model (CLM v4.0) for simulations at 1 km, 25 km, and 100 km resolution using 1 km soil and topographic information. Multi-year model runs were performed over the southwestern United States, including the entire state of California and the Colorado River basin. Results show changes in the total amount of CLM-modeled water storage and in the spatial and temporal distributions of water in snow and soil reservoirs, as well as in surface fluxes and energy balance. We also demonstrate the critical scales at which important hydrological processes--such as snow water equivalent, soil moisture content, and runoff--begin to more accurately capture the magnitude of the land water balance for the entire domain. This proves that grid resolution itself is also a critical component of accurate model simulations, and of hydrologic budget closure. To inform future model progress, we compare simulation outputs to station and gridded observations of model fields. Although the higher grid resolution model is not driven by high-resolution forcing, grid resolution changes alone yield significant reductions in the Root Mean Square Error (RMSE) between model outputs and actual observations: the RMSE decreases by more than 35% for soil moisture, 36% for terrestrial water storage anomaly, 34% for sensible heat, and 12% for snow water equivalent. The results of a 100 m resolution simulation over a spatial sub-domain indicate that parameters such as drainage, runoff, and infiltration are significantly impacted when hillslope scales of ~100 meters or finer are considered. We further show how limitations in the current model physics, including no lateral flow between grid cells, can affect model simulation accuracy. The results presented in Chapter 2 are encouraging, but also highlight the limitations in improving an LSM by only increasing spatial resolution of the model and the surface datasets. As was shown with the water table depth analysis, increasing model resolution cannot compensate for parameterization errors and lack of sub-surface information in CLM. However, this problem can be solved by providing additional information to the model in the form of water table depth via data assimilation. In Chapter 3, I discuss the development and verification of a methodology for assimilating observed groundwater depth measurements from multiple wells into the high spatial resolution LSM. A kriging-based interpolation technique is employed to overcome the problem of spatially and temporally sparse observations, and the interpolated data is assimilated into the CLM4.0 at 1 km resolution in a test region in northern California. Direct insertion and Ensemble Adjusted Kalman Filter (EAKF) based techniques are used for assimilation with direct insertion, producing better results and demonstrating major improvement in the simulation of water table depth. The Linear Pearson correlation coefficient between the observed well data and the assimilated model is 0.810, as opposed to only 0.107 for the non-assimilated model. This improvement is most significant where the water table depth is greater than 5 m. Assimilation also improves soil moisture content, especially in the dry season when the water table is at its lowest. Other variables, including sensible heat flux, ground evaporation, infiltration, and runoff are also analyzed in order to quantify the effect of this assimilation methodology. Though the changes in these variables seem small, they can be very important in coupled models, and the improved simulation of groundwater in the assimilated model can explain the changes in these results. This assimilation technique has been designed for use in regions with sparse and varied observation data, and it can be easily adapted to work in LSMs with a functional groundwater component. This gives us the capability to better model groundwater for the recent past and present, and also the potential to apply climate projections to probabilistically predict groundwater for future climate-change scenarios. We have collaborated with Wellintel Inc. to implement our methodology on the ground using their observation data. We are in the process of setting up our model over a large region along the central California coast, where for the past few months Wellintel has implemented a pilot with measurements based on its water table depth measuring devices. The aim of this collaboration is to provide users with actionable water table depth data in and around their properties for the past, present, and near future. We are combining this methodology with Wellintel data to create a groundwater-management and groundwater-banking monitoring tool. This is the first time that groundwater assimilation has been simulated in a high-resolution LSM, and as such this project provides proof-of-concept and application of a unique methodology that can be run at hyper resolution with data assimilation. The assimilation method is a very powerful tool that researchers can now apply to model land surface parameters much better than previously.


Assimilation of Remote Sensing Data into Earth System Models

Assimilation of Remote Sensing Data into Earth System Models
Author: Jean-Christophe Calvet
Publisher: MDPI
Total Pages: 236
Release: 2019-11-20
Genre: Science
ISBN: 3039216406

Download Assimilation of Remote Sensing Data into Earth System Models Book in PDF, ePub and Kindle

In the Earth sciences, a transition is currently occurring in multiple fields towards an integrated Earth system approach, with applications including numerical weather prediction, hydrological forecasting, climate impact studies, ocean dynamics estimation and monitoring, and carbon cycle monitoring. These approaches rely on coupled modeling techniques using Earth system models that account for an increased level of complexity of the processes and interactions between atmosphere, ocean, sea ice, and terrestrial surfaces. A crucial component of Earth system approaches is the development of coupled data assimilation of satellite observations to ensure consistent initialization at the interface between the different subsystems. Going towards strongly coupled data assimilation involving all Earth system components is a subject of active research. A lot of progress is being made in the ocean–atmosphere domain, but also over land. As atmospheric models now tend to address subkilometric scales, assimilating high spatial resolution satellite data in the land surface models used in atmospheric models is critical. This evolution is also challenging for hydrological modeling. This book gathers papers reporting research on various aspects of coupled data assimilation in Earth system models. It includes contributions presenting recent progress in ocean–atmosphere, land–atmosphere, and soil–vegetation data assimilation.


Data Assimilation

Data Assimilation
Author: William Lahoz
Publisher: Springer Science & Business Media
Total Pages: 710
Release: 2010-07-23
Genre: Science
ISBN: 3540747036

Download Data Assimilation Book in PDF, ePub and Kindle

Data assimilation methods were largely developed for operational weather forecasting, but in recent years have been applied to an increasing range of earth science disciplines. This book will set out the theoretical basis of data assimilation with contributions by top international experts in the field. Various aspects of data assimilation are discussed including: theory; observations; models; numerical weather prediction; evaluation of observations and models; assessment of future satellite missions; application to components of the Earth System. References are made to recent developments in data assimilation theory (e.g. Ensemble Kalman filter), and to novel applications of the data assimilation method (e.g. ionosphere, Mars data assimilation).


Land Surface Remote Sensing in Continental Hydrology

Land Surface Remote Sensing in Continental Hydrology
Author: Nicolas Baghdadi
Publisher: Elsevier
Total Pages: 502
Release: 2016-09-19
Genre: Technology & Engineering
ISBN: 0081011814

Download Land Surface Remote Sensing in Continental Hydrology Book in PDF, ePub and Kindle

The continental hydrological cycle is one of the least understood components of the climate system. The understanding of the different processes involved is important in the fields of hydrology and meteorology. In this volume the main applications for continental hydrology are presented, including the characterization of the states of continental surfaces (water state, snow cover, etc.) using active and passive remote sensing, monitoring the Antarctic ice sheet and land water surface heights using radar altimetry, the characterization of redistributions of water masses using the GRACE mission, the potential of GNSS-R technology in hydrology, and remote sensing data assimilation in hydrological models. This book, part of a set of six volumes, has been produced by scientists who are internationally renowned in their fields. It is addressed to students (engineers, Masters, PhD) , engineers and scientists, specialists in remote sensing applied to hydrology. Through this pedagogical work, the authors contribute to breaking down the barriers that hinder the use of Earth observation data. Provides clear and concise descriptions of modern remote sensing methods Explores the most current remote sensing techniques with physical aspects of the measurement (theory) and their applications Provides chapters on physical principles, measurement, and data processing for each technique described Describes optical remote sensing technology, including a description of acquisition systems and measurement corrections to be made


Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III)

Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III)
Author: Seon Ki Park
Publisher: Springer
Total Pages: 553
Release: 2016-12-26
Genre: Science
ISBN: 3319434152

Download Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III) Book in PDF, ePub and Kindle

This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.


Handbook of Hydrometeorological Ensemble Forecasting

Handbook of Hydrometeorological Ensemble Forecasting
Author: Qingyun Duan
Publisher: Springer
Total Pages: 0
Release: 2016-05-06
Genre: Science
ISBN: 9783642399244

Download Handbook of Hydrometeorological Ensemble Forecasting Book in PDF, ePub and Kindle

Hydrometeorological prediction involves the forecasting of the state and variation of hydrometeorological elements -- including precipitation, temperature, humidity, soil moisture, river discharge, groundwater, etc.-- at different space and time scales. Such forecasts form an important scientific basis for informing public of natural hazards such as cyclones, heat waves, frosts, droughts and floods. Traditionally, and at most currently operational centers, hydrometeorological forecasts are deterministic, “single-valued” outlooks: i.e., the weather and hydrological models provide a single best guess of the magnitude and timing of the impending events. These forecasts suffer the obvious drawback of lacking uncertainty information that would help decision-makers assess the risks of forecast use. Recently, hydrometeorological ensemble forecast approaches have begun to be developed and used by operational collection of hydrometeorological services. In contrast to deterministic forecasts, ensemble forecasts are a multiple forecasts of the same events. The ensemble forecasts are generated by perturbing uncertain factors such as model forcings, initial conditions, and/or model physics. Ensemble techniques are attractive because they not only offer an estimate of the most probable future state of the hydrometeorological system, but also quantify the predictive uncertainty of a catastrophic hydrometeorological event occurring. The Hydrological Ensemble Prediction Experiment (HEPEX), initiated in 2004, has signaled a new era of collaboration toward the development of hydrometeorological ensemble forecasts. By bringing meteorologists, hydrologists and hydrometeorological forecast users together, HEPEX aims to improve operational hydrometeorological forecast approaches to a standard that can be used with confidence by emergencies and water resources managers. HEPEX advocates a hydrometeorological ensemble prediction system (HEPS) framework that consists of several basic building blocks. These components include:(a) an approach (typically statistical) for addressing uncertainty in meteorological inputs and generating statistically consistent space/time meteorological inputs for hydrological applications; (b) a land data assimilation approach for leveraging observation to reduce uncertainties in the initial and boundary conditions of the hydrological system; (c) approaches that address uncertainty in model parameters (also called ‘calibration’); (d) a hydrologic model or other approach for converting meteorological inputs into hydrological outputs; and finally (e) approaches for characterizing hydrological model output uncertainty. Also integral to HEPS is a verification system that can be used to evaluate the performance of all of its components. HEPS frameworks are being increasingly adopted by operational hydrometeorological agencies around the world to support risk management related to flash flooding, river and coastal flooding, drought, and water management. Real benefits of ensemble forecasts have been demonstrated in water emergence management decision making, optimization of reservoir operation, and other applications.


Four-Dimensional Model Assimilation of Data

Four-Dimensional Model Assimilation of Data
Author: National Research Council
Publisher: National Academies Press
Total Pages: 89
Release: 1991-02-01
Genre: Science
ISBN: 0309045363

Download Four-Dimensional Model Assimilation of Data Book in PDF, ePub and Kindle

This volume explores and evaluates the development, multiple applications, and usefulness of four-dimensional (space and time) model assimilations of data in the atmospheric and oceanographic sciences and projects their applicability to the earth sciences as a whole. Using the predictive power of geophysical laws incorporated in the general circulation model to produce a background field for comparison with incoming raw observations, the model assimilation process synthesizes diverse, temporarily inconsistent, and spatially incomplete observations from worldwide land, sea, and space data acquisition systems into a coherent representation of an evolving earth system. The book concludes that this subdiscipline is fundamental to the geophysical sciences and presents a basic strategy to extend the application of this subdiscipline to the earth sciences as a whole.