Laboratory Characterization Of Asphalt Binders Containing A Chemical Based Warm Mix Asphalt Additive PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Laboratory Characterization Of Asphalt Binders Containing A Chemical Based Warm Mix Asphalt Additive PDF full book. Access full book title Laboratory Characterization Of Asphalt Binders Containing A Chemical Based Warm Mix Asphalt Additive.

Laboratory Characterization of Asphalt Binders Containing a Chemical-Based Warm Mix Asphalt Additive

Laboratory Characterization of Asphalt Binders Containing a Chemical-Based Warm Mix Asphalt Additive
Author: Shivani Rani
Publisher:
Total Pages: 16
Release: 2020
Genre: Asphalt
ISBN:

Download Laboratory Characterization of Asphalt Binders Containing a Chemical-Based Warm Mix Asphalt Additive Book in PDF, ePub and Kindle

Different technologies, namely foamed asphalt, synthetic waxes, zeolites, and chemical additives, are used to produce warm mix asphalt (WMA). This study was undertaken to evaluate the effect of using different amounts of an amine-based chemical WMA additive on the rheology, performance grade (PG), and moisture-induced damage potential of an asphalt binder (PG 58-28). Superpave specifications were used to evaluate the rheological properties and PG of the asphalt binder. Also, a mechanistic approach-based on the surface free energy (SFE) method was used to evaluate the moisture-induced damage potential of the asphalt binder combined with commonly used aggregates in an asphalt mix. It was found that the dynamic viscosity of the asphalt binder was not significantly affected after blending it with the WMA additive. It was also observed that the Superpave high-temperature PG and the rutting factor did not reduce by an increase in the WMA additive content. However, the continuous low-temperature PG of the asphalt binder decreased with an increase in the amount of WMA additive. Furthermore, it was found that the fatigue resistance increased after blending the binder with the WMA additive. The SFE results of the asphalt binder revealed that the WMA additive used in this study reduced the moisture-induced damage potential of the asphalt mixes. However, the extent of this improvement was found to largely depend on the aggregate type. The outcomes of this study are expected to help better understand the influence of amine-based chemical WMA additives on rheological and long-term performance of asphalt mix.


Characteristics of a Surfactant Produced Warm Mix Asphalt Binder and Workability of the Mixture

Characteristics of a Surfactant Produced Warm Mix Asphalt Binder and Workability of the Mixture
Author: Xiaoyan Li
Publisher:
Total Pages: 12
Release: 2015
Genre: Contact angle
ISBN:

Download Characteristics of a Surfactant Produced Warm Mix Asphalt Binder and Workability of the Mixture Book in PDF, ePub and Kindle

Warm mix asphalt (WMA) technologies significantly reduced the mixing and compaction temperatures in the construction of asphalt pavement, which thus lowered the energy consumption and gas emissions. Different types of WMA additives have been developed and applied in the past decade. However, there are still several concerns associated with the application of WMA technologies. The objective of this study was to address the characteristics of WMA binder produced using a surfactant additive namely, ADDITIVE-A. Two binders, 70 penetration grade (70#) asphalt and 90 penetration grade (90#) asphalt were applied as the base binder to produce the WMA in this study. A portable workability device was presented in this paper to evaluate the torque values of WMAs since the workability is the main property to determine the mixing and compaction temperatures of WMA and a laboratory workability test has yet to be developed. The proper mixing and compaction temperatures were also obtained based on the proposed test. A series of tests, including penetration, softening point, ductility and viscosity of different WMA additive concentrations (0, 0.3, 0.5, 0.7, and 0.9 % by the weight of asphalt binder) were conducted to investigate the mechanisms of the surfactant on asphalt binder. The contact angles of WMA binders were tested to investigate the modification mechanism of surfactant additive on asphalt binder. The laboratory tests indicate that the surfactant additive (ADDITIVE-A) makes the asphalt binder softer, more temperature sensitive, and having better low temperature property. However, the surfactant does not show a significant impact on the high temperature property and viscosity. The addition of the surfactant additive increased the workability of asphalt mixture and decreased the mixing and compaction temperatures of asphalt mixture. Based on the workability test results, the 0.7 % concentrations of the ADDITIVE-A provided a more obvious effect to reduce the production temperature of asphalt mixture.


Climate Change, Energy, Sustainability and Pavements

Climate Change, Energy, Sustainability and Pavements
Author: Kasthurirangan Gopalakrishnan
Publisher: Springer
Total Pages: 517
Release: 2014-09-25
Genre: Technology & Engineering
ISBN: 3662447193

Download Climate Change, Energy, Sustainability and Pavements Book in PDF, ePub and Kindle

Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today’s interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges. "This book proposes a broad detailed overview of the actual scientific knowledge about pavements linked to climate change, energy and sustainability at the international level in an original multidimensional/multi-effects way. By the end, the reader will be aware of the whole global issues to care about for various pavement technical features around the world, among which the implications of modelling including data collection, challenging resources saving and infrastructures services optimisation. This is a complete and varied work, rare in the domain." Dr. Agnes Jullien Research Director Director of Environmental, Development, Safety and Eco-Design Laboratory (EASE) Department of Development, Mobility and Environment Ifsttar Centre de Nantes Cedex- France “An excellent compilation of latest developments in the field of sustainable pavements. The chapter topics have been carefully chosen and are very well-organized with the intention of equipping the reader with the state-of-the-art knowledge on all aspects of pavement sustainability. Topics covered include pavement Life Cycle Analysis (LCA), pervious pavements, cool pavements, photocatalytic pavements, energy harvesting pavements, etc. which will all be of significant interest to students, researchers, and practitioners of pavement engineering. This book will no doubt serve as an excellent reference on the topic of sustainable pavements.” Dr. Wei-Hsing Huang Editor-in-Chief of International Journal of Pavement Research and Technology (IJPRT) and Professor of Civil Engineering National Central University Taiwan


Durability and Performance Characteristics of Hot Mix Asphalt Containing Polymer Additives

Durability and Performance Characteristics of Hot Mix Asphalt Containing Polymer Additives
Author: Robert Y. Liang
Publisher:
Total Pages: 286
Release: 2001
Genre: Pavements, Asphalt concrete
ISBN:

Download Durability and Performance Characteristics of Hot Mix Asphalt Containing Polymer Additives Book in PDF, ePub and Kindle

Ohio Department of Transportation has adopted the hot mix asphalt concrete containing polymer modifiers for use in the interstate highway pavement. Among the various reasons cited for the adoption of polymer modifiers are the favorable field experiences by ODOT, extensive literatures reporting enhanced performance, such as rutting resistance, low temperature thermal cracking resistance, and possibly fatigue endurance. However, despite these favorable findings, there are still cases involving premature failure of hot mixtures containing polymer modifiers. Concerns regarding optimum polymer content, compatibility between polymer additives and asphalt cement, proper mixing and compaction procedure remain to be resolved. Furthermore, performance based specifications to ensure production of desirable final asphalt concrete product require additional development. Questions regarding the suitability of Superpave binder testing procedures for the polymer-modified binders need to be clarified.


A Comparison of Warm Asphalt Binder Aging with Laboratory Aging Procedures

A Comparison of Warm Asphalt Binder Aging with Laboratory Aging Procedures
Author: Tejash Gandhi
Publisher:
Total Pages: 8
Release: 2010
Genre: Asphalt
ISBN:

Download A Comparison of Warm Asphalt Binder Aging with Laboratory Aging Procedures Book in PDF, ePub and Kindle

Warm asphalt has been gaining increasing popularity in recent years; however there are several characteristics about warm asphalt that are still unknown. While several studies have been conducted to study the performance of warm asphalt mixtures, aging characteristics of warm mix asphalt (WMA) binders are not known in great detail. This paper presents the results of a limited study to evaluate the aging characteristics of two WMA binders artificially aged in the rolling thin film oven (RTFO) and the pressure aging vessel and comparing them with binder extracted from freshly prepared and artificially aged warm asphalt mixtures. RTFO aging was performed at 163°C and a lower temperature to simulate warm asphalt aging. Tests on binders aged in the laboratory and binders extracted from freshly mixed and aged mixtures indicated that the WMA binders extracted from WMA mixtures had significantly lower viscosities and G*/sin ? compared to binders extracted from hot mix asphalt (HMA) and binders aged in the RTFO at 163°C (325°F). This indicates that the lower mixing and compaction temperatures reduce the aging of the warm asphalt binders. Also, binders extracted from WMA had significantly lower creep stiffness values and significantly higher m-values compared to warm asphalt binders aged in the RTFO at 163°C (325°F) and binders extracted from HMA. Binders containing WMA additives did not have higher G* sin ? values, indicating that the warm asphalt additives do not negatively affect the fatigue properties of the binders. Gel permeation chromatography analysis indicated that the addition of the warm asphalt additives did not have any significant effect on the %LMS of the binders used in this study.


Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE)

Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE)
Author: Marco Pasetto
Publisher: Springer Nature
Total Pages: 503
Release: 2019-08-29
Genre: Science
ISBN: 3030297799

Download Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE) Book in PDF, ePub and Kindle

This volume highlights the latest advances, innovations, and applications in the field of asphalt pavement technology, as presented by leading international researchers and engineers at the 5th International Symposium on Asphalt Pavements & Environment (ISAP 2019 APE Symposium), held in Padua, Italy on September 11-13, 2019. It covers a diverse range of topics concerning materials and technologies for asphalt pavements, designed for sustainability and environmental compatibility: sustainable pavement materials, marginal materials for asphalt pavements, pavement structures, testing methods and performance, maintenance and management methods, urban heat island mitigation, energy harvesting, and Life Cycle Assessment. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.


DSC/HISS Modeling Applications for Problems in Mechanics, Geomechanics, and Structural Mechanics

DSC/HISS Modeling Applications for Problems in Mechanics, Geomechanics, and Structural Mechanics
Author: Chandrakant S. Desai
Publisher: CRC Press
Total Pages: 459
Release: 2023-11-30
Genre: Technology & Engineering
ISBN: 1000966801

Download DSC/HISS Modeling Applications for Problems in Mechanics, Geomechanics, and Structural Mechanics Book in PDF, ePub and Kindle

Understanding the mechanical behavior of solids and contacts (interfaces and joints) is vital for the analysis, design, and maintenance of engineering systems. Materials may simultaneously experience the effects of many factors such as elastic, plastic, and creep strains; different loading (stress) paths; volume change under shear stress; and microcracking leading to fracture and failure, strain softening, or degradation. Typically, the available models account for only one factor at a time; however, the disturbed state concept (DSC) with the hierarchical single-surface (HISS) plasticity is a unified modeling approach that can allow for numerous factors simultaneously, and in an integrated manner. DSC/HISS Modeling Applications for Problems in Mechanics, Geomechanics, and Structural Mechanics provides readers with comprehensive information including the basic concepts and applications for the DSC/HISS modeling regarding a wide range of engineering materials and contacts. Uniformity in format and content of each chapter will make it easier for the reader to appreciate the potential of using the DSC/HISS modeling across various applications. Features: • Presents a new and simplified way to learn characterizations and behaviors of materials and contacts under various conditions • Offers modeling applicable to several different materials including geologic (clays, sands, rocks), modified geologic materials (structured soils, overconsolidated soils, expansive soils, loess, frozen soils, chemically treated soils), hydrate-bearing sediments, and more.