Kinetic Theory And Gas Dynamics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Kinetic Theory And Gas Dynamics PDF full book. Access full book title Kinetic Theory And Gas Dynamics.

Gas Dynamics

Gas Dynamics
Author: George Turrell
Publisher: John Wiley & Sons
Total Pages: 162
Release: 1997-09-09
Genre: Science
ISBN: 9780471975731

Download Gas Dynamics Book in PDF, ePub and Kindle

This book consists of two parts, theory and applications. Part I introduces the kinetic theory of gases with relevance to molecular energies and intermolecular forces. Part II focuses on how these theories are used to explain real techniques and phenomena involving gases. By stressing the practical implications, the book explains the theory of gas dynamics in a highly readable and comprehensive manner.


An Introduction to the Kinetic Theory of Gases

An Introduction to the Kinetic Theory of Gases
Author: James Jeans
Publisher: CUP Archive
Total Pages: 324
Release: 1982-10-14
Genre: Science
ISBN: 9780521092326

Download An Introduction to the Kinetic Theory of Gases Book in PDF, ePub and Kindle

This book can be described as a student's edition of the author's Dynamical Theory of Gases. It is written, however, with the needs of the student of physics and physical chemistry in mind, and those parts of which the interest was mainly mathematical have been discarded. This does not mean that the book contains no serious mathematical discussion; the discussion in particular of the distribution law is quite detailed; but in the main the mathematics is concerned with the discussion of particular phenomena rather than with the discussion of fundamentals.


Kinetic Theory and Fluid Dynamics

Kinetic Theory and Fluid Dynamics
Author: Yoshio Sone
Publisher: Springer Science & Business Media
Total Pages: 358
Release: 2012-12-06
Genre: Science
ISBN: 146120061X

Download Kinetic Theory and Fluid Dynamics Book in PDF, ePub and Kindle

This monograph is intended to provide a comprehensive description of the rela tion between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, accord ing to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is di rectly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit.


Kinetic Theory and Gas Dynamics

Kinetic Theory and Gas Dynamics
Author: C. Cercignani
Publisher: Springer
Total Pages: 219
Release: 2014-05-04
Genre: Technology & Engineering
ISBN: 3709127629

Download Kinetic Theory and Gas Dynamics Book in PDF, ePub and Kindle


Molecular Gas Dynamics

Molecular Gas Dynamics
Author: Yoshio Sone
Publisher: Springer Science & Business Media
Total Pages: 667
Release: 2007-10-16
Genre: Science
ISBN: 081764573X

Download Molecular Gas Dynamics Book in PDF, ePub and Kindle

This self-contained book is an up-to-date description of the basic theory of molecular gas dynamics and its various applications. The book, unique in the literature, presents working knowledge, theory, techniques, and typical phenomena in rarefied gases for theoretical development and application. Basic theory is developed in a systematic way and presented in a form easily applied for practical use. In this work, the ghost effect and non-Navier–Stokes effects are demonstrated for typical examples—Bénard and Taylor–Couette problems—in the context of a new framework. A new type of ghost effect is also discussed.


The Dynamical Theory of Gases

The Dynamical Theory of Gases
Author: Sir James Hopwood Jeans
Publisher:
Total Pages: 370
Release: 1904
Genre: Kinetic theory of gases
ISBN:

Download The Dynamical Theory of Gases Book in PDF, ePub and Kindle


Rarefied Gas Dynamics

Rarefied Gas Dynamics
Author: K Karamcheti
Publisher: Elsevier
Total Pages: 562
Release: 2012-12-02
Genre: Science
ISBN: 032314618X

Download Rarefied Gas Dynamics Book in PDF, ePub and Kindle

Rarefied Gas Dynamics is a collection of selected papers presented at the Eighth International Symposium on Rarefied Gas Dynamics, held at Stanford University in July 1972. The book is a record of the significant advances in the broad field of Rarefied Gas Dynamics that are considered to be of general and continuing interest. The articles in this compendium are organized under 10 main topics. The text presents research papers on the kinetic theory of gases; studies and experiments on shock structures of gases; use of kinetic theory for the solution of problems in evaporation and condensation; gas expansions and jets; and techniques and methods applied to the study of rarefied gas dynamics. The book also includes works on gas-solid interactions; descriptions of basic notions of current polyatomic gas kinetics; and observation of the gas dynamic phenomena in space. Physicists, aeronautical engineers, mechanical engineers, researchers, and students in the field of aircraft design will find this book a good source of knowledge and information.


Kinetic Theory of Granular Gases

Kinetic Theory of Granular Gases
Author: Nikolai V. Brilliantov
Publisher: Oxford University Press
Total Pages: 343
Release: 2010-11-11
Genre: Science
ISBN: 0199588139

Download Kinetic Theory of Granular Gases Book in PDF, ePub and Kindle

In contrast to molecular gases (for example, air), the particles of granular gases, such as a cloud of dust, lose part of their kinetic energy when they collide, giving rise to many exciting physical properties. The book provides a self-contained introduction to the theory of granular gases for advanced undergraduates and beginning graduates.


Nonequilibrium Gas Dynamics and Molecular Simulation

Nonequilibrium Gas Dynamics and Molecular Simulation
Author: Iain D. Boyd
Publisher: Cambridge University Press
Total Pages: 383
Release: 2017-03-23
Genre: Science
ISBN: 1107073448

Download Nonequilibrium Gas Dynamics and Molecular Simulation Book in PDF, ePub and Kindle

7.1 Introduction -- 7.2 Rotational Energy Exchange Models -- 7.2.1 Constant Collision Number -- 7.2.2 The Parker Model -- 7.2.3 Variable Probability Exchange Model of Boyd -- 7.2.4 Nonequilibrium Direction Dependent Model -- 7.2.5 Model Results -- 7.3 Vibrational Energy Exchange Models -- 7.3.1 Constant Collision Number -- 7.3.2 The Millikan-White Model -- 7.3.3 Quantized Treatment for Vibration -- 7.3.4 Model Results -- 7.4 Dissociation Chemical Reactions -- 7.4.1 Total Collision Energy Model -- 7.4.2 Redistribution of Energy Following a Dissociation Reaction -- 7.4.3 Vibrationally Favored Dissociation Model -- 7.5 General Chemical Reactions -- 7.5.1 Reaction Rates and Equilibrium Constant -- 7.5.2 Backward Reaction Rates in DSMC -- 7.5.3 Three-Body Recombination Reactions -- 7.5.4 Post-Reaction Energy Redistribution and General Implementation -- 7.5.5 DSMC Solutions for Reacting Flows -- 7.6 Summary -- Appendix A: Generating Particle Properties -- Appendix B: Collisional Quantities -- Appendix C: Determining Post-Collision Velocities -- Appendix D: Macroscopic Properties -- Appendix E: Common Integrals -- References -- Index