Kinematic Control Of Redundant Robot Arms Using Neural Networks PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Kinematic Control Of Redundant Robot Arms Using Neural Networks PDF full book. Access full book title Kinematic Control Of Redundant Robot Arms Using Neural Networks.

Kinematic Control of Redundant Robot Arms Using Neural Networks

Kinematic Control of Redundant Robot Arms Using Neural Networks
Author: Shuai Li
Publisher: John Wiley & Sons
Total Pages: 278
Release: 2019-02-12
Genre: Technology & Engineering
ISBN: 1119556996

Download Kinematic Control of Redundant Robot Arms Using Neural Networks Book in PDF, ePub and Kindle

Presents pioneering and comprehensive work on engaging movement in robotic arms, with a specific focus on neural networks This book presents and investigates different methods and schemes for the control of robotic arms whilst exploring the field from all angles. On a more specific level, it deals with the dynamic-neural-network based kinematic control of redundant robot arms by using theoretical tools and simulations. Kinematic Control of Redundant Robot Arms Using Neural Networks is divided into three parts: Neural Networks for Serial Robot Arm Control; Neural Networks for Parallel Robot Control; and Neural Networks for Cooperative Control. The book starts by covering zeroing neural networks for control, and follows up with chapters on adaptive dynamic programming neural networks for control; projection neural networks for robot arm control; and neural learning and control co-design for robot arm control. Next, it looks at robust neural controller design for robot arm control and teaches readers how to use neural networks to avoid robot singularity. It then instructs on neural network based Stewart platform control and neural network based learning and control co-design for Stewart platform control. The book finishes with a section on zeroing neural networks for robot arm motion generation. Provides comprehensive understanding on robot arm control aided with neural networks Presents neural network-based control techniques for single robot arms, parallel robot arms (Stewart platforms), and cooperative robot arms Provides a comparison of, and the advantages of, using neural networks for control purposes rather than traditional control based methods Includes simulation and modelling tasks (e.g., MATLAB) for onward application for research and engineering development By focusing on robot arm control aided by neural networks whilst examining central topics surrounding the field, Kinematic Control of Redundant Robot Arms Using Neural Networks is an excellent book for graduate students and academic and industrial researchers studying neural dynamics, neural networks, analog and digital circuits, mechatronics, and mechanical engineering.


Neural Networks for Cooperative Control of Multiple Robot Arms

Neural Networks for Cooperative Control of Multiple Robot Arms
Author: Shuai Li
Publisher: Springer
Total Pages: 74
Release: 2017-10-29
Genre: Technology & Engineering
ISBN: 9811070377

Download Neural Networks for Cooperative Control of Multiple Robot Arms Book in PDF, ePub and Kindle

This is the first book to focus on solving cooperative control problems of multiple robot arms using different centralized or distributed neural network models, presenting methods and algorithms together with the corresponding theoretical analysis and simulated examples. It is intended for graduate students and academic and industrial researchers in the field of control, robotics, neural networks, simulation and modelling.


Repetitive Motion Planning and Control of Redundant Robot Manipulators

Repetitive Motion Planning and Control of Redundant Robot Manipulators
Author: Yunong Zhang
Publisher: Springer Science & Business Media
Total Pages: 201
Release: 2014-07-08
Genre: Technology & Engineering
ISBN: 3642375189

Download Repetitive Motion Planning and Control of Redundant Robot Manipulators Book in PDF, ePub and Kindle

Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China; Zhijun Zhang is a research fellow working at the same institute.


AI based Robot Safe Learning and Control

AI based Robot Safe Learning and Control
Author: Xuefeng Zhou
Publisher: Springer Nature
Total Pages: 138
Release: 2020-06-02
Genre: Technology & Engineering
ISBN: 9811555036

Download AI based Robot Safe Learning and Control Book in PDF, ePub and Kindle

This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities.


Robot Manipulator Redundancy Resolution

Robot Manipulator Redundancy Resolution
Author: Yunong Zhang
Publisher: John Wiley & Sons
Total Pages: 320
Release: 2017-09-11
Genre: Technology & Engineering
ISBN: 1119381428

Download Robot Manipulator Redundancy Resolution Book in PDF, ePub and Kindle

Introduces a revolutionary, quadratic-programming based approach to solving long-standing problems in motion planning and control of redundant manipulators This book describes a novel quadratic programming approach to solving redundancy resolutions problems with redundant manipulators. Known as ``QP-unified motion planning and control of redundant manipulators'' theory, it systematically solves difficult optimization problems of inequality-constrained motion planning and control of redundant manipulators that have plagued robotics engineers and systems designers for more than a quarter century. An example of redundancy resolution could involve a robotic limb with six joints, or degrees of freedom (DOFs), with which to position an object. As only five numbers are required to specify the position and orientation of the object, the robot can move with one remaining DOF through practically infinite poses while performing a specified task. In this case redundancy resolution refers to the process of choosing an optimal pose from among that infinite set. A critical issue in robotic systems control, the redundancy resolution problem has been widely studied for decades, and numerous solutions have been proposed. This book investigates various approaches to motion planning and control of redundant robot manipulators and describes the most successful strategy thus far developed for resolving redundancy resolution problems. Provides a fully connected, systematic, methodological, consecutive, and easy approach to solving redundancy resolution problems Describes a new approach to the time-varying Jacobian matrix pseudoinversion, applied to the redundant-manipulator kinematic control Introduces The QP-based unification of robots' redundancy resolution Illustrates the effectiveness of the methods presented using a large number of computer simulation results based on PUMA560, PA10, and planar robot manipulators Provides technical details for all schemes and solvers presented, for readers to adopt and customize them for specific industrial applications Robot Manipulator Redundancy Resolution is must-reading for advanced undergraduates and graduate students of robotics, mechatronics, mechanical engineering, tracking control, neural dynamics/neural networks, numerical algorithms, computation and optimization, simulation and modelling, analog, and digital circuits. It is also a valuable working resource for practicing robotics engineers and systems designers and industrial researchers.


Biologically Inspired Control of Humanoid Robot Arms

Biologically Inspired Control of Humanoid Robot Arms
Author: Adam Spiers
Publisher: Springer
Total Pages: 276
Release: 2016-05-19
Genre: Technology & Engineering
ISBN: 3319301608

Download Biologically Inspired Control of Humanoid Robot Arms Book in PDF, ePub and Kindle

This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniques investigated in this book. The method includes attractive features such as the decoupling of motion into task and posture components. Various developments are made in each of these elements. Simple cost functions inspired by biomechanical “effort” and “discomfort” generate realistic posture motion. Sliding-mode techniques overcome robustness shortcomings for practical implementation. Arm compliance is achieved via a method of model-free adaptive control that also deals with actuator saturation via anti-windup compensation. A neural-network-centered learning-by-observation scheme generates new task motions, based on motion-capture data recorded from human volunteers. In other parts of the book, motion capture is used to test theories of human movement. All developed controllers are applied to the reaching motion of a humanoid robot arm and are demonstrated to be practically realisable. This book is designed to be of interest to those wishing to achieve dynamics-based human-like robot-arm motion in academic research, advanced study or certain industrial environments. The book provides motivations, extensive reviews, research results and detailed explanations. It is not only suited to practising control engineers, but also applicable for general roboticists who wish to develop control systems expertise in this area.


Control and Dynamic Systems V39: Advances in Robotic Systems Part 1 of 2

Control and Dynamic Systems V39: Advances in Robotic Systems Part 1 of 2
Author: C.T. Leonides
Publisher: Elsevier
Total Pages: 485
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 0323163033

Download Control and Dynamic Systems V39: Advances in Robotic Systems Part 1 of 2 Book in PDF, ePub and Kindle

Advances in Robotic Systems, Part 1 shows how the activity in robotic systems has increased significantly over the past decade. Major centers of research and development in robotic systems were established on the international scene, and these became focal points for the brilliant research efforts of many academicians and industrial professionals. The systems aspects of robotics, in general, and of robot control, in particular, are manifested through a number of technical facts. This book comprises 10 chapters, with the first focusing on applications of neural networks to robotics. The following chapters then discuss a unified approach to kinematic modeling, identification and compensation for robot calibration; nonlinear control algorithms in robotic systems; and kinematic and dynamic task space motion planning for robot control. Other chapters cover discrete kinematic modeling techniques in Cartesian space for robotic system; force distribution algorithms for multifingered grippers; frequency analysis for a discrete-time robot system; minimum cost trajectory planning for industrial robots; tactile sensing techniques in robotic systems; and sensor data fusion in robotic systems. This book will be of interest to practitioners in the fields of computer science, systems science, and mathematics.


Bioinspired Design and Control of Robots with Intrinsic Compliance

Bioinspired Design and Control of Robots with Intrinsic Compliance
Author: Yongping Pan
Publisher: Frontiers Media SA
Total Pages: 132
Release: 2020-12-04
Genre: Science
ISBN: 2889661571

Download Bioinspired Design and Control of Robots with Intrinsic Compliance Book in PDF, ePub and Kindle

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.


Deep Reinforcement Learning with Guaranteed Performance

Deep Reinforcement Learning with Guaranteed Performance
Author: Yinyan Zhang
Publisher: Springer Nature
Total Pages: 225
Release: 2019-11-09
Genre: Technology & Engineering
ISBN: 3030333841

Download Deep Reinforcement Learning with Guaranteed Performance Book in PDF, ePub and Kindle

This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances. It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution. Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks.


Neural Network Control Of Robot Manipulators And Non-Linear Systems

Neural Network Control Of Robot Manipulators And Non-Linear Systems
Author: F W Lewis
Publisher: CRC Press
Total Pages: 468
Release: 2020-08-14
Genre: Technology & Engineering
ISBN: 100016277X

Download Neural Network Control Of Robot Manipulators And Non-Linear Systems Book in PDF, ePub and Kindle

There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.