Kernels For Structured Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Kernels For Structured Data PDF full book. Access full book title Kernels For Structured Data.

Kernels for Structured Data

Kernels for Structured Data
Author: Thomas Gartner
Publisher: World Scientific
Total Pages: 216
Release: 2008
Genre: Computers
ISBN: 9812814566

Download Kernels for Structured Data Book in PDF, ePub and Kindle

This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers.


Kernels For Structured Data

Kernels For Structured Data
Author: Thomas Gartner
Publisher: World Scientific
Total Pages: 216
Release: 2008-08-29
Genre: Computers
ISBN: 9814471038

Download Kernels For Structured Data Book in PDF, ePub and Kindle

This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers.


Kernels for Structured Data

Kernels for Structured Data
Author: Thomas Gärtner
Publisher:
Total Pages: 160
Release: 2005
Genre:
ISBN:

Download Kernels for Structured Data Book in PDF, ePub and Kindle


Kernel Methods in Computational Biology

Kernel Methods in Computational Biology
Author: Bernhard Schölkopf
Publisher: MIT Press
Total Pages: 428
Release: 2004
Genre: Computers
ISBN: 9780262195096

Download Kernel Methods in Computational Biology Book in PDF, ePub and Kindle

A detailed overview of current research in kernel methods and their application to computational biology.


Graph Kernels

Graph Kernels
Author: Karsten Borgwardt
Publisher:
Total Pages: 198
Release: 2020-12-22
Genre:
ISBN: 9781680837704

Download Graph Kernels Book in PDF, ePub and Kindle


Kernel Methods for Pattern Analysis

Kernel Methods for Pattern Analysis
Author: John Shawe-Taylor
Publisher: Cambridge University Press
Total Pages: 520
Release: 2004-06-28
Genre: Computers
ISBN: 9780521813976

Download Kernel Methods for Pattern Analysis Book in PDF, ePub and Kindle

Publisher Description


Kernel Methods for Graph-structured Data Analysis

Kernel Methods for Graph-structured Data Analysis
Author: Zhen Zhang (Electrical engineer)
Publisher:
Total Pages: 121
Release: 2019
Genre: Electronic dissertations
ISBN:

Download Kernel Methods for Graph-structured Data Analysis Book in PDF, ePub and Kindle

Structured data modeled as graphs arise in many application domains, such as computer vision, bioinformatics, and sociology. In this dissertation, we focus on three important topics in graph-structured data analysis: graph comparison, graph embeddings, and graph matching, for all of which we propose effective algorithms by making use of kernel functions and the corresponding reproducing kernel Hilbert spaces.For the first topic, we develop effective graph kernels, named as "RetGK," for quantitatively measuring the similarities between graphs. Graph kernels, which are positive definite functions on graphs, are powerful similarity measures, in the sense that they make various kernel-based learning algorithms, for example, clustering, classification, and regression, applicable to structured data. Our graph kernels are obtained by two-step embeddings. In the first step, we represent the graph nodes with numerical vectors in Euclidean spaces. To do this, we revisit the concept of random walks and introduce a new node structural role descriptor, the return probability feature. In the second step, we represent the whole graph with an element in reproducing kernel Hilbert spaces. After that, we can naturally obtain our graph kernels. The advantages of our proposed kernels are that they can effectively exploit various node attributes, while being scalable to large graphs. We conduct extensive graph classification experiments to evaluate our graph kernels. The experimental results show that our graph kernels significantly outperform state-of-the-art approaches in both accuracy and computational efficiency.For the second topic, we develop scalable attributed graph embeddings, named as "SAGE." Graph embeddings are Euclidean vector representations, which encode the attributed and the topological information. With graph embeddings, we can apply all the machine learning algorithms, such as neural networks, regression/classification trees, and generalized linear regression models, to graph-structured data. We also want to highlight that SAGE considers both the edge attributes and node attributes, while RetGK only considers the node attributes. "SAGE" is a extended work of "RetGK," in the sense that it is still based on the return probabilities of random walks and is derived from graph kernels. But "SAGE" uses a totally different strategy, i.e., the "distance to kernel and embeddings" algorithm, to further represent graphs. To involve the edge attributes, we introduce the adjoint graph, which can help convert edge attributes to node attributes. We conduct classification experiments on graphs with both node and edge attributes. "SAGE" achieves the better performances than all previous methods.For the third topic, we develop a new algorithm, named as "KerGM," for graph matching. Typically, graph matching problems can be formulated as two kinds of quadratic assignment problems (QAPs): Koopmans-Beckmann's QAP or Lawler's QAP. In our work, we provide a unifying view for these two problems by introducing new rules for array operations in Hilbert spaces. Consequently, Lawler's QAP can be considered as the Koopmans-Beckmann's alignment between two arrays in reproducing kernel Hilbert spaces, making it possible to efficiently solve the problem without computing a huge affinity matrix. Furthermore, we develop the entropy-regularized Frank-Wolfe algorithm for optimizing QAPs, which has the same convergence rate as the original Frank-Wolfe algorithm while dramatically reducing the computational burden for each outer iteration. Furthermore, we conduct extensive experiments to evaluate our approach, and show that our algorithm has superior performance in both matching accuracy and scalability.


Kernel Methods for Pattern Analysis

Kernel Methods for Pattern Analysis
Author: John Shawe-Taylor
Publisher: Cambridge University Press
Total Pages: 520
Release: 2004-06-28
Genre: Computers
ISBN: 1139451618

Download Kernel Methods for Pattern Analysis Book in PDF, ePub and Kindle

Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.


Inductive Logic Programming

Inductive Logic Programming
Author: Stan Matwin
Publisher: Springer Science & Business Media
Total Pages: 361
Release: 2003-02-12
Genre: Computers
ISBN: 3540005676

Download Inductive Logic Programming Book in PDF, ePub and Kindle

This book constitutes the thoroughly refereed post-proceedings of the 12th International Conference on Inductive Logic Programming, ILP 2002, held in Sydney, Australia in July 2002. The 22 revised full papers presented were carefully selected during two rounds of reviewing and revision from 45 submissions. Among the topics addressed are first order decision lists, learning with description logics, bagging in ILP, kernel methods, concept learning, relational learners, description logic programs, Bayesian classifiers, knowledge discovery, data mining, logical sequences, theory learning, stochastic logic programs, machine discovery, and relational pattern discovery.