Investigations Of The Structural Electrical And Magnetic Properties For Novel Magnetic Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Investigations Of The Structural Electrical And Magnetic Properties For Novel Magnetic Materials PDF full book. Access full book title Investigations Of The Structural Electrical And Magnetic Properties For Novel Magnetic Materials.

Investigations of the Structural, Electrical, and Magnetic Properties for Novel Magnetic Materials

Investigations of the Structural, Electrical, and Magnetic Properties for Novel Magnetic Materials
Author: Jennifer Rose Soliz
Publisher:
Total Pages: 249
Release: 2012
Genre:
ISBN:

Download Investigations of the Structural, Electrical, and Magnetic Properties for Novel Magnetic Materials Book in PDF, ePub and Kindle

Abstract: In this entire work, we characterize the structural, electrical, and magnetic properties of many novel magnetic polycrystalline materials. Our focus is to investigate these properties to enhance the scientific community and possibly pave the road to explore into other directions, such as growing thin films. we investigate the effect of charge carrier substitution with chemical disorder for Ca1-xLaxMn0.5Ru0.5O3 (x = 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, and 0.0) double perovskites. X-ray diffraction measurements showed these polycrystalline powders to be phase pure and to exhibit Pnma symmetry with a b+a- octahedral tilting. Neutron powder diffraction (NPD) showed that the crystal structure and magnetic moments do not change significantly across the substitution range. Ca0.5La0.5Mn0.5Ru0.5O3 exhibits ferrimagnetism. NPD further concluded the lack of cooperative Jahn Teller distortion. Density functional theory (DFT) calculations confirmed that the extra 1/2 electron is responsible for opening the band gap, in that 0.295e and 0.17e is being transferred to the Ru and Mn bands, respectively. Thus, the Fermi level is being tuned when La3+ is substituted into the system. DFT calculations also showed ferrimagnetism to be the most energetically stable magnetic phase. Overall we conclude that despite the chemical disorder, Ca0.5La0.5Mn0.5Ru0.5O3 is an insulating ferrimagnet with a Curie temperature (TC) of 233 K, which is a rare finding to have chemical disorder with magnetic order. The next chapter, we examine the effects of isovalent substitution in Ba1-xSrxMn0.5Ru0.5O3 system. We explore how the larger cation, Ba2+, impacts the structural, electrical, and magnetic properties. We find that BaMn0.5Ru0.5O3 crystallizes in the 9R polymorph with R-3m symmetry. BaMn0.5Ru0.5O3 is an insulating canted antiferromagnet with a TN of 36 K. From neutron diffraction, Mn1 and Mn2 have magnetic moment values of 1.60(4) uB/f.u. and 2.15(2) uB/f.u., respectively. For simplicity, the Ru moments were not refined. While the refined moments are low for Mn3+/4+, it is assumed that Ru is contributing to the magnetic moments. Ba0.5Sr0.5Mn0.5Ru0.5O3 crystallizes with the 6H crystal structure which has P63/mmc symmetry. From low temperature neutron diffraction, Ba0.5Sr0.5Mn0.5Ru0.5O3 exhibits glassy behavior since it lacks long range magnetic order. Resistivity measurements show this compound to be an insulator. In the following chapter, we continue studying Ba1-xAxMn0.5Ru0.5O3 perovskites by substituting in charge carriers. We explore the effects of aliovalent substitution, La3+, by investigating the structural, magnetic, and electrical properties for the phase diagram of Ba1 xLaxMn0.5Ru0.5O3 system. The end members were found to be phase pure solid solutions while the in between compositions were heterogeneous mixtures. While BaMn0.5Ru0.5O3 exhibits the 9R as noted above, Ba0.5La0.5Mn0.5Ru0.5O3 manifests the 3C (I4/mcm space group symmetry) crystal structure and is an insulating ferrimagnet with a TC of 205 K. From neutron diffraction, both the ferromagnetic and ferrimagnetic structures have similar refinement values. However, the moments obtained from a ferrimagnetic structure (Mn = 3.7 uB/f.u. and Ru = -0.88(2) uB/f.u.) are more reasonable than for a ferromagnetic structure (Mn = 1.707(7) uB/f.u. and Ru = 1.707(7) uB/f.u.). Plus the magnetization shows Ba0.5La0.5Mn0.5Ru0.5O3 to have 1.54 uB/f.u., which is closer in value to the expected spin only ferrimagnetic moment for Mn3+ + Ru4+ oxidation states. Thus we conclude that Ba0.5La0.5Mn0.5Ru0.5O3 is a ferrimagnet based on the refined magnetic moments gathered from neutron diffraction and the magnetization results from SQUID. Thin films of Sr2CrReO6 have been reported to be metallic (possibly half-metallic) with a high Curie temperature (635K), which makes this material a feasible candidate for spintronic applications. To understand the role of doping, investigations of the structural, electrical, and magnetic properties of on and off stoichiometric Sr2+xCrReO6 (x = -0.07, 0.0, 0.05, 0.075, and 0.10), Sr2Cr1+yRe1 yO6 (y = 0.1, 0.05, 0.05, and 0.1), and A-site substituted Sr2-zAzCrReO6 (A = K, Ca, and La; z = 0.10 and 0.20; z = 1.0 only for Ca) samples have been achieved. Varying the Cr/Re ratio and aliovalent substitutions on the A-site lead to systematic variations in the magnetization and Curie temperatures. As the Re oxidation state increases, the saturation magnetization increases and the Curie temperature decreases. In the last chapter, we investigate the structural, magnetic, and electrical properties of phase pure polycrystalline Sr2CrOsO6. From X-ray powder diffraction, Sr2CrOsO6 adopts the symmetry and is 73.6(3) % ordered. Our magnetic results show Sr2CrOsO6 to be a ferrimagnet with a small net moment of 0.224 uB/f.u. and the coercitivity to be 7.84 T at 4.5 K in a field strength of 35 T, and the Curie temperature is 660 K. Sr2CrOsO6 is strongly insulating with resistivity of 0.0861 [omega]*cm at 300 K and shows activated electron transport.


Handbook of Advanced Magnetic Materials

Handbook of Advanced Magnetic Materials
Author: Yi Liu
Publisher: Springer Science & Business Media
Total Pages: 1844
Release: 2008-11-23
Genre: Science
ISBN: 1402079842

Download Handbook of Advanced Magnetic Materials Book in PDF, ePub and Kindle

In December 2002, the world's first commercial magnetic levitation super-train went into operation in Shanghai. The train is held just above the rails by magnetic levitation (maglev) and can travel at a speed of 400 km/hr, completing the 30km journey from the city to the airport in minutes. Now consumers are enjoying 50 GB hard drives compared to 0.5 GB hard drives ten years ago. Achievements in magnetic materials research have made dreams of a few decades ago reality. The objective of the four volume reference, Handbook of Advanced Magnetic Materials, is to provide a comprehensive review of recent progress in magnetic materials research. Each chapter will have an introduction to give a clear definition of basic and important concepts of the topic. The details of the topic are then elucidated theoretically and experimentally. New ideas for further advancement are then discussed. Sufficient references are also included for those who wish to read the original work. In the last decade, one of the most significant thrust areas of materials research has been nanostructured magnetic materials. There are several critical sizes that control the behavior of a magnetic material, and size effects become especially critical when dimensions approach a few nanometers, where quantum phenomena appear. The first volume of the book, Nanostructured Advanced Magnetic Materials, has therefore been devoted to the recent development of nanostructured magnetic materials, emphasizing size effects. Our understanding of magnetism has advanced with the establishment of the theory of atomic magnetic moments and itinerant magnetism. Simulation is a powerful tool for exploration and explanation of properties of various magnetic materials. Simulation also provides insight for further development of new materials. Naturally, before any simulation can be started, a model must be constructed. This requires that the material be well characterized. Therefore the second volume, Characterization and Simulation provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. After an introduction, each section gives a detailed description of the method and the following sections provide examples and results of the method. Finally further development of the method will be discussed. The success of each type of magnetic material depends on its properties and cost which are directly related to its fabrication process. Processing of a material can be critical for development of artificial materials such as multilayer films, clusters, etc. Moreover, cost-effective processing usually determines whether a material can be commercialized. In recent years processing of materials has continuously evolved from improvement of traditional methods to more sophisticated and novel methods. The objective of the third volume, Processing of Advanced Magnetic Materials, is to provide a comprehensive review of recent developments in processing of advanced magnetic materials. Each chapter will have an introduction and a section to provide a detailed description of the processing method. The following sections give detailed descriptions of the processing, properties and applications of the relevant materials. Finally the potential and limitation of the processing method will be discussed. The properties of a magnetic material can be characterized by intrinsic properties such as anisotropy, saturation magnetization and extrinsic properties such as coercivity. The properties of a magnetic material can be affected by its chemical composition and processing route. With the continuous search for new materials and invention of new processing routes, magnetic properties of materials cover a wide spectrum of soft magnetic materials, hard magnetic materials, recording materials, sensor materials and others. The objective of the fourth volume, Properties and Applications of Advanced Magnetic Materials, is to provide a comprehensive review of recent development of various magnetic materials and their applications. Each chapter will have an introduction of the materials and the principles of their applications. The following sections give a detailed description of the processing, properties and applications. Finally the potential and limitation of the materials will be discussed.


Studies on the Structural, Electrical and Magnetic Properties of Some Substituted Spinel Ferrites

Studies on the Structural, Electrical and Magnetic Properties of Some Substituted Spinel Ferrites
Author: Dr. Satish Baburao Shelke
Publisher: Insta Publishing
Total Pages: 62
Release:
Genre: Education
ISBN: 8194718287

Download Studies on the Structural, Electrical and Magnetic Properties of Some Substituted Spinel Ferrites Book in PDF, ePub and Kindle

This book brings together the most important advances in the field of recent decades. It provides instructors teaching graduate, postgraduate and researchers level for material science courses with a comprehensive and in-depth textbook, that will prepare post graduate students for research or further study as well as reading more advanced and specialized books and research literature in the field. This textbook covers Introduction to Spinel Ferrites, Materials and Methods, Synthesis of Ferrites, while discussing cutting-edge such as Structural Properties, Magnetic Properties, Electrical Properties, Results and Discussion, Experimental Procedure, Results and Discussion, Conclusions


Ultrathin Magnetic Structures II

Ultrathin Magnetic Structures II
Author: Bretislav Heinrich
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 2005-12-31
Genre: Science
ISBN: 354027166X

Download Ultrathin Magnetic Structures II Book in PDF, ePub and Kindle

The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism, with profound impact in technology and serving as the basis for a revolution in electronics. Our understanding of the physics of magnetic nanostructures has also advanced significantly. This rapid development has generated a need for a comprehensive treatment that can serve as an introduction to the field for those entering it from diverse fields, but which will also serve as a timely overview for those already working in this area. The four-volume work Ultra-Thin Magnetic Structures aims to fulfill this dual need. The original two volumes – now available once more – are "An Introduction to the Electronic, Magnetic and Structural Properties" (Vol. I) and Measurement Techniques and Novel Magnetic Properties (this volume). Two new volumes, "Fundamentals of Nanomagnetism" and "Applications of Nanomagnetism," extend and complete this comprehensive work by presenting the foundations of spintronics.


Preparation, Characterization and Investigations of Electrical and Magnetic Properties of Some Ferrites

Preparation, Characterization and Investigations of Electrical and Magnetic Properties of Some Ferrites
Author: Sagar Shirsath
Publisher: GRIN Verlag
Total Pages: 169
Release: 2011-08
Genre: Science
ISBN: 3640977890

Download Preparation, Characterization and Investigations of Electrical and Magnetic Properties of Some Ferrites Book in PDF, ePub and Kindle

Doctoral Thesis / Dissertation from the year 2010 in the subject Physics - Nuclear Physics, Molecular Physics, Solid State Physics, Dr. Babasaheb Ambedkar Marathwada University (-), course: PH.D., language: English, abstract: Wide scope is available to study these aspects of ferrite which at present to our knowledge was not probe by researchers. In relevance to the ever expanding possibilities, and potential that is available with the ferrite materials, the scope of presently undertaken work is designed carefully by selecting suitable ferrite and dopants. A sincere attempt was made to extract fruitful, exhaustive and, systematic information regarding structural, cation distribution, electrical, dielectric and magnetic aspects of the ferrite systems under investigations. In the present study, the properties of nickel ferrites substituted by diamagnetic Zn2+, non-magnetic trivalent In3+ ions and tetravalent Ce4+ ions are studied for various compositions. The properties are investigated with a view to understand the effect of divalent, trivalent and tetravalent substitution in nickel ferrite. The thesis consists of five chapters. Chapter 1 related to Scope, problem statement, theory of magnetism, ferrites, background, motivation and aim of the present work, properties of the samples under investigations, objective and outline of thesis. Chapter 2, 3 and 4 related to results and discussion of structural, electrical and magnetic properties of Ni1-xZnxFe2O4, NiInxFe2-xO4 and Ni1-2xCexFe2O4 ferrite system respectively. Chapter 5 gives the summary, discussion and conclusion on Zn, In and Ce substituted nickel ferrite. On summarizing the results obtained on Ni-Zn, Ni-In and Ni-Ce spinel ferrites it can be concluded that; - The structural properties are found to be varying in all the three systems. The lattice parameter of Ni ferrite systems increases with increasing valancy of dopants (Zn2+, In3+ and Ce4+). - The other prominent parameter of our structural study i.e. p


Magnetic Properties of Fine Particles

Magnetic Properties of Fine Particles
Author: J.L. Dormann
Publisher: Elsevier
Total Pages: 445
Release: 2012-12-02
Genre: Science
ISBN: 0444597417

Download Magnetic Properties of Fine Particles Book in PDF, ePub and Kindle

The aim of this volume is to advance the understanding of the fundamental properties of fine magnetic particles and to discuss the latest developments from both the theoretical and experimental viewpoints, with special emphasis being placed on the applications in different branches of science and technology. All aspects of fine magnetic particles are covered in the 46 papers. The topics are remarkably interdisciplinary covering theory, materials preparation, structural characterization, optical and electrical properties, magnetic properties studied by different techniques and applications. Some new fundamental properties, such as quantum tunneling and transverse fluctuations of magnetic moments are also explored. Research workers involved in these aspects of materials technology will find this book of great interest.


Novel Magnetic Nanostructures

Novel Magnetic Nanostructures
Author: Natalia Domracheva
Publisher: Elsevier
Total Pages: 492
Release: 2018-06-14
Genre: Technology & Engineering
ISBN: 0128135956

Download Novel Magnetic Nanostructures Book in PDF, ePub and Kindle

Novel Magnetic Nanostructures: Unique Properties and Applications reviews the synthesis, design, characterization and unique properties of emerging nanostructured magnetic materials. It discusses the most promising and relevant applications, including data storage, spintronics and biomedical applications. Properties investigated include electronic, self-assembling, multifunctional, and magnetic properties, along with magnetic phenomena. Structures range from magnetic nanoclusters, nanoparticles, and nanowires, to multilayers and self-assembling nanosystems. This book provides a better understanding of the static and dynamic magnetism in new nanostructures for important applications. Provides an overview of the latest research on novel magnetic nanostructures, including molecular nanomagnets, metallacrown magnetic nanostructures, magnetic dendrimers, self-assembling magnetic structures, multifunctional nanostructures, and much more Reviews the synthesis, design, characterization and detection of useful properties in new magnetic nanostructures Highlights the most relevant applications, including spintronic, data storage and biomedical applications


Ultrathin Magnetic Structures I

Ultrathin Magnetic Structures I
Author: J.A.C. Bland
Publisher: Springer Science & Business Media
Total Pages: 358
Release: 2006-01-16
Genre: Technology & Engineering
ISBN: 3540272321

Download Ultrathin Magnetic Structures I Book in PDF, ePub and Kindle

The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism, with profound impact in technology and serving as the basis for a revolution in electronics. Our understanding of the physics of magnetic nanostructures has also advanced significantly. This rapid development has generated a need for a comprehensive treatment that can serve as an introduction to the field for those entering it from diverse fields, but which will also serve as a timely overview for those already working in this area. The four-volume work Ultra-Thin Magnetic Structures aims to fulfill this dual need. The original two volumes – now available once more – are An Introduction to the Electronic, Magnetic and Structural Properties (this volume) and "Measurement Techniques and Novel Magnetic Properties." Two new volumes, "Fundamentals of Nanomagnetism" and "Applications of Nanomagnetism," extend and complete this comprehensive work by presenting the foundations of spintronics.


Ultrathin Magnetic Structures II

Ultrathin Magnetic Structures II
Author: Bretislav Heinrich
Publisher:
Total Pages:
Release: 1994
Genre:
ISBN: 9783662225776

Download Ultrathin Magnetic Structures II Book in PDF, ePub and Kindle