Investigation Of Advanced Gas Turbine Cycles PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Investigation Of Advanced Gas Turbine Cycles PDF full book. Access full book title Investigation Of Advanced Gas Turbine Cycles.

Advanced Gas Turbine Cycles

Advanced Gas Turbine Cycles
Author: J.H. Horlock
Publisher: Elsevier
Total Pages: 224
Release: 2013-10-22
Genre: Technology & Engineering
ISBN: 0080545564

Download Advanced Gas Turbine Cycles Book in PDF, ePub and Kindle

Primarily this book describes the thermodynamics of gas turbine cycles. The search for high gas turbine efficiency has produced many variations on the simple "open circuit" plant, involving the use of heat exchangers, reheating and intercooling, water and steam injection, cogeneration and combined cycle plants. These are described fully in the text. A review of recent proposals for a number of novel gas turbine cycles is also included. In the past few years work has been directed towards developing gas turbines which produce less carbon dioxide, or plants from which the CO2 can be disposed of; the implications of a carbon tax on electricity pricing are considered. In presenting this wide survey of gas turbine cycles for power generation the author calls on both his academic experience (at Cambridge and Liverpool Universities, the Gas Turbine Laboratory at MIT and Penn State University) and his industrial work (primarily with Rolls Royce, plc.) The book will be essential reading for final year and masters students in mechanical engineering, and for practising engineers.


Advanced Technologies for Gas Turbines

Advanced Technologies for Gas Turbines
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 137
Release: 2020-03-19
Genre: Science
ISBN: 030966425X

Download Advanced Technologies for Gas Turbines Book in PDF, ePub and Kindle

Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.


Gas Turbines for Electric Power Generation

Gas Turbines for Electric Power Generation
Author: S. Can Gülen
Publisher: Cambridge University Press
Total Pages: 735
Release: 2019-02-14
Genre: Science
ISBN: 1108416659

Download Gas Turbines for Electric Power Generation Book in PDF, ePub and Kindle

Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.


Gas Turbine Engineering Handbook

Gas Turbine Engineering Handbook
Author: Meherwan P. Boyce
Publisher: Elsevier
Total Pages: 956
Release: 2017-09-01
Genre: Mathematics
ISBN: 0080456898

Download Gas Turbine Engineering Handbook Book in PDF, ePub and Kindle

The Gas Turbine Engineering Handbook has been the standard for engineers involved in the design, selection, and operation of gas turbines. This revision includes new case histories, the latest techniques, and new designs to comply with recently passed legislation. By keeping the book up to date with new, emerging topics, Boyce ensures that this book will remain the standard and most widely used book in this field. The new Third Edition of the Gas Turbine Engineering Hand Book updates the book to cover the new generation of Advanced gas Turbines. It examines the benefit and some of the major problems that have been encountered by these new turbines. The book keeps abreast of the environmental changes and the industries answer to these new regulations. A new chapter on case histories has been added to enable the engineer in the field to keep abreast of problems that are being encountered and the solutions that have resulted in solving them. Comprehensive treatment of Gas Turbines from Design to Operation and Maintenance. In depth treatment of Compressors with emphasis on surge, rotating stall, and choke; Combustors with emphasis on Dry Low NOx Combustors; and Turbines with emphasis on Metallurgy and new cooling schemes. An excellent introductory book for the student and field engineers A special maintenance section dealing with the advanced gas turbines, and special diagnostic charts have been provided that will enable the reader to troubleshoot problems he encounters in the field The third edition consists of many Case Histories of Gas Turbine problems. This should enable the field engineer to avoid some of these same generic problems


Analytical Investigation of Cycle Characteristics for Advanced Turboelectric Space Power Systems

Analytical Investigation of Cycle Characteristics for Advanced Turboelectric Space Power Systems
Author: Thomas P. Moffitt
Publisher:
Total Pages: 36
Release: 1960
Genre: Space vehicles
ISBN:

Download Analytical Investigation of Cycle Characteristics for Advanced Turboelectric Space Power Systems Book in PDF, ePub and Kindle

An investigation was made of the relative influence of turbine inlet temperature, radiator temperature, and turbine efficiency on radiator area for Rankine cycles with rubidium, potassium, and sodium as working fluids. It was determined that, whereas turbine inlet temperature and turbine efficiency have gross effects on radiator size for a given inlet temperature a considerable latitude in the selection of radiator temperature may be accepted with only minor effects on required radiator size. Also investigated was the influence on turbine efficiency and design of the factors that distinguish alkali-metal vapor turbines from conventional gas turbines. The turbine configuration was determined to be a function of the involved working fluids and rotor blade speed. For a given blade speed, the number of stages required for high turbine efficiency was found to vary directly with turbine specific work output, and therefore to vary in the ratio 5 to 2.5 to 1 for sodium, potassium, and rubidium, respectively. Lower blade speeds than employed in conventional gas turbines may be required to satisfy critical stress considerations resulting from the elevated temperatures involved and the criterion of long-duration reliability. This will increase the number of turbine stages necessary to obtain high turbine efficiency and consequently increase turbine weight. The question of moisture formation was discussed and a calculation was made to indicate the nature of the aerodynamic losses due to moisture content. Various means of reducing moisture content were considered, including mechanical removal, increased radiator temperature, inefficient expansion, superheat, and reheat. Sample calculations were made in most cases to indicate their comparative effectiveness and resultant penalty in required radiator area.