Invariant Recognition Of Visual Objects PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Invariant Recognition Of Visual Objects PDF full book. Access full book title Invariant Recognition Of Visual Objects.

Invariant Recognition of Visual Objects

Invariant Recognition of Visual Objects
Author: Evgeniy Bart
Publisher: Frontiers E-books
Total Pages: 195
Release:
Genre:
ISBN: 2889190765

Download Invariant Recognition of Visual Objects Book in PDF, ePub and Kindle

This Research Topic will focus on how the visual system recognizes objects regardless of variations in the viewpoint, illumination, retinal size, background, etc. Contributors are encouraged to submit articles describing novel results, models, viewpoints, perspectives and/or methodological innovations relevant to this topic. The issues we wish to cover include, but are not limited to, perceptual invariance under one or more of the following types of image variation: • Object shape • Task • Viewpoint (from the translation and rotation of the object relative to the viewer) • Illumination, shading, and shadows • Degree of occlusion • Retinal size • Color • Surface texture • Visual context, including background clutter and crowding • Object motion (including biological motion). Examples of questions that are particularly interesting in this context include, but are not limited to: • Empirical characterizations of properties of invariance: does invariance always exist? How wide is its range and how strong is the tolerance to viewing conditions within this range? • Invariance in naïve vs. experienced subjects: Is invariance built-in or learned? How can it be learned, under which conditions and how effectively? Is it learned incidentally, or are specific task and reward structures necessary for learning? How is generalizability and transfer of learning related to the generalizability/invariance of perception? • Invariance during inference: Are there conditions (e.g. fast presentation time or otherwise resource-constrained recognition) when invariance breaks? • What are some plausible computational or neural mechanisms by which invariance could be achieved?


Visual Object Recognition

Visual Object Recognition
Author: Kristen Grauman
Publisher: Morgan & Claypool Publishers
Total Pages: 184
Release: 2011
Genre: Computers
ISBN: 1598299689

Download Visual Object Recognition Book in PDF, ePub and Kindle

The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization. Table of Contents: Introduction / Overview: Recognition of Specific Objects / Local Features: Detection and Description / Matching Local Features / Geometric Verification of Matched Features / Example Systems: Specific-Object Recognition / Overview: Recognition of Generic Object Categories / Representations for Object Categories / Generic Object Detection: Finding and Scoring Candidates / Learning Generic Object Category Models / Example Systems: Generic Object Recognition / Other Considerations and Current Challenges / Conclusions


The Dynamics of Invariant Object and Action Recognition in the Human Visual System

The Dynamics of Invariant Object and Action Recognition in the Human Visual System
Author: Leyla Isik
Publisher:
Total Pages: 138
Release: 2015
Genre:
ISBN:

Download The Dynamics of Invariant Object and Action Recognition in the Human Visual System Book in PDF, ePub and Kindle

Humans can quickly and effortlessly recognize objects, and people and their actions from complex visual inputs. Despite the ease with which the human brain solves this problem, the underlying computational steps have remained enigmatic. What makes object and action recognition challenging are identity-preserving transformations that alter the visual appearance of objects and actions, such as changes in scale, position, and viewpoint. The majority of visual neuroscience studies examining visual recognition either use physiology recordings, which provide high spatiotemporal resolution data with limited brain coverage, or functional MRI, which provides high spatial resolution data from across the brain with limited temporal resolution. High temporal resolution data from across the brain is needed to break down and understand the computational steps underlying invariant visual recognition. In this thesis I use magenetoencephalography, machine learning, and computational modeling to study invariant visual recognition. I show that a temporal association learning rule for learning invariance in hierarchical visual systems is very robust to manipulations and visual disputations that happen during development (Chapter 2). I next show that object recognition occurs very quickly, with invariance to size and position developing in stages beginning around 100ms after stimulus onset (Chapter 3), and that action recognition occurs on a similarly fast time scale, 200 ms after video onset, with this early representation being invariant to changes in actor and viewpoint (Chapter 4). Finally, I show that the same hierarchical feedforward model can explain both the object and action recognition timing results, putting this timing data in the broader context of computer vision systems and models of the brain. This work sheds light on the computational mechanisms underlying invariant object and action recognition in the brain and demonstrates the importance of using high temporal resolution data to understand neural computations.


Integrating Computational and Neural Findings in Visual Object Perception

Integrating Computational and Neural Findings in Visual Object Perception
Author: Judith C. Peters
Publisher: Frontiers Media SA
Total Pages: 139
Release: 2016-06-29
Genre: Neurosciences. Biological psychiatry. Neuropsychiatry
ISBN: 2889198731

Download Integrating Computational and Neural Findings in Visual Object Perception Book in PDF, ePub and Kindle

The articles in this Research Topic provide a state-of-the-art overview of the current progress in integrating computational and empirical research on visual object recognition. Developments in this exciting multidisciplinary field have recently gained momentum: High performance computing enabled breakthroughs in computer vision and computational neuroscience. In parallel, innovative machine learning applications have recently become available for datamining the large-scale, high resolution brain data acquired with (ultra-high field) fMRI and dense multi-unit recordings. Finally, new techniques to integrate such rich simulated and empirical datasets for direct model testing could aid the development of a comprehensive brain model. We hope that this Research Topic contributes to these encouraging advances and inspires future research avenues in computational and empirical neuroscience.


Computer Vision - ECCV 2008

Computer Vision - ECCV 2008
Author: David Hutchison
Publisher:
Total Pages: 0
Release: 2008
Genre: Computer graphics
ISBN: 9788354088684

Download Computer Vision - ECCV 2008 Book in PDF, ePub and Kindle

The four-volume set comprising LNCS volumes 5302/5303/5304/5305 constitutes the refereed proceedings of the 10th European Conference on Computer Vision, ECCV 2008, held in Marseille, France, in October 2008. The 243 revised papers presented were carefully reviewed and selected from a total of 871 papers submitted. The four books cover the entire range of current issues in computer vision. The papers are organized in topical sections on recognition, stereo, people and face recognition, object tracking, matching, learning and features, MRFs, segmentation, computational photography and active reconstruction.


Unsupervised Learning of Invariant Object Representation in Primate Visual Cortex

Unsupervised Learning of Invariant Object Representation in Primate Visual Cortex
Author: Nuo Li (Ph.D.)
Publisher:
Total Pages: 176
Release: 2011
Genre:
ISBN:

Download Unsupervised Learning of Invariant Object Representation in Primate Visual Cortex Book in PDF, ePub and Kindle

Visual object recognition (categorization and identification) is one of the most fundamental cognitive functions for our survival. Our visual system has the remarkable ability to convey to us visual object and category information in a manner that is largely tolerant ("invariant") to the exact position, size, pose of the object, illumination, and clutter. The ventral visual stream in non-human primate has solved this problem. At the highest stage of the visual hierarchy, the inferior temporal cortex (IT), neurons have selectivity for objects and maintain that selectivity across variations in the images. A reasonably sized population of these tolerant neurons can support object recognition. However, we do not yet understand how IT neurons construct this neuronal tolerance. The aim of this thesis is to tackle this question and to examine the hypothesis that the ventral visual stream may leverage experience to build its neuronal tolerance. One potentially powerful idea is that time can act as an implicit teacher, in that each object's identity tends to remain temporally stable, thus different retinal images of the same object are temporally contiguous. In theory, the ventral stream could take advantage of this natural tendency and learn to associate together the neuronal representations of temporally contiguous retinal images to yield tolerant object selectivity in IT cortex. In this thesis, I report neuronal support for this hypothesis in IT of non-human primates. First, targeted alteration of temporally contiguous experience with object images at different retinal positions rapidly reshaped IT neurons' position tolerance. Second, similar temporal contiguity manipulation of experience with object images at different sizes similarly reshaped IT size tolerance. These instances of experience-induced effect were similar in magnitude, grew gradually stronger with increasing visual experience, and the size of the effect was large. Taken together, these studies show that unsupervised, temporally contiguous experience can reshape and build at least two types of IT tolerance, and that they can do so under a wide range of spatiotemporal regimes encountered during natural visual exploration. These results suggest that the ventral visual stream uses temporal contiguity visual experience with a general unsupervised tolerance learning (UTL) mechanism to build its invariant object representation.


Hierarchical Object Representations in the Visual Cortex and Computer Vision

Hierarchical Object Representations in the Visual Cortex and Computer Vision
Author: Antonio Rodríguez-Sánchez
Publisher: Frontiers Media SA
Total Pages: 292
Release: 2016-06-08
Genre: Neurosciences. Biological psychiatry. Neuropsychiatry
ISBN: 2889197980

Download Hierarchical Object Representations in the Visual Cortex and Computer Vision Book in PDF, ePub and Kindle

Over the past 40 years, neurobiology and computational neuroscience has proved that deeper understanding of visual processes in humans and non-human primates can lead to important advancements in computational perception theories and systems. One of the main difficulties that arises when designing automatic vision systems is developing a mechanism that can recognize - or simply find - an object when faced with all the possible variations that may occur in a natural scene, with the ease of the primate visual system. The area of the brain in primates that is dedicated at analyzing visual information is the visual cortex. The visual cortex performs a wide variety of complex tasks by means of simple operations. These seemingly simple operations are applied to several layers of neurons organized into a hierarchy, the layers representing increasingly complex, abstract intermediate processing stages. In this Research Topic we propose to bring together current efforts in neurophysiology and computer vision in order 1) To understand how the visual cortex encodes an object from a starting point where neurons respond to lines, bars or edges to the representation of an object at the top of the hierarchy that is invariant to illumination, size, location, viewpoint, rotation and robust to occlusions and clutter; and 2) How the design of automatic vision systems benefit from that knowledge to get closer to human accuracy, efficiency and robustness to variations.