Introduction To Parallel And Vector Solution Of Linear Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Introduction To Parallel And Vector Solution Of Linear Systems PDF full book. Access full book title Introduction To Parallel And Vector Solution Of Linear Systems.

Introduction to Parallel and Vector Solution of Linear Systems

Introduction to Parallel and Vector Solution of Linear Systems
Author: James M. Ortega
Publisher: Springer Science & Business Media
Total Pages: 309
Release: 2013-06-29
Genre: Computers
ISBN: 1489921125

Download Introduction to Parallel and Vector Solution of Linear Systems Book in PDF, ePub and Kindle

Although the origins of parallel computing go back to the last century, it was only in the 1970s that parallel and vector computers became available to the scientific community. The first of these machines-the 64 processor llliac IV and the vector computers built by Texas Instruments, Control Data Corporation, and then CRA Y Research Corporation-had a somewhat limited impact. They were few in number and available mostly to workers in a few government laboratories. By now, however, the trickle has become a flood. There are over 200 large-scale vector computers now installed, not only in government laboratories but also in universities and in an increasing diversity of industries. Moreover, the National Science Foundation's Super computing Centers have made large vector computers widely available to the academic community. In addition, smaller, very cost-effective vector computers are being manufactured by a number of companies. Parallelism in computers has also progressed rapidly. The largest super computers now consist of several vector processors working in parallel. Although the number of processors in such machines is still relatively small (up to 8), it is expected that an increasing number of processors will be added in the near future (to a total of 16 or 32). Moreover, there are a myriad of research projects to build machines with hundreds, thousands, or even more processors. Indeed, several companies are now selling parallel machines, some with as many as hundreds, or even tens of thousands, of processors.


Computational Methods Of Linear Algebra (3rd Edition)

Computational Methods Of Linear Algebra (3rd Edition)
Author: Granville Sewell
Publisher: World Scientific Publishing Company
Total Pages: 329
Release: 2014-07-07
Genre: Mathematics
ISBN: 9814603880

Download Computational Methods Of Linear Algebra (3rd Edition) Book in PDF, ePub and Kindle

This book presents methods for the computational solution of some important problems of linear algebra: linear systems, linear least squares problems, eigenvalue problems, and linear programming problems. The book also includes a chapter on the fast Fourier transform and a very practical introduction to the solution of linear algebra problems on modern supercomputers.The book contains the relevant theory for most of the methods employed. It also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs for solving linear algebraic problems. Highly readable FORTRAN and MATLAB codes are presented which solve all of the main problems studied.


Scientific Computing

Scientific Computing
Author: Gene H. Golub
Publisher: Elsevier
Total Pages: 453
Release: 2014-06-28
Genre: Computers
ISBN: 1483296040

Download Scientific Computing Book in PDF, ePub and Kindle

This book introduces the basic concepts of parallel and vector computing in the context of an introduction to numerical methods. It contains chapters on parallel and vector matrix multiplication and solution of linear systems by direct and iterative methods. It is suitable for advanced undergraduate and beginning graduate courses in computer science, applied mathematics, and engineering. Ideally, students will have access to a parallel or Vector computer, but the material can be studied profitably in any case. Gives a modern overview of scientific computing including parallel an vector computation Introduces numerical methods for both ordinary and partial differential equations Has considerable discussion of both direct and iterative methods for linear systems of equations, including parallel and vector algorithms Covers most of the main topics for a first course in numerical methods and can serve as a text for this course


Numerical Linear Algebra on High-Performance Computers

Numerical Linear Algebra on High-Performance Computers
Author: Jack J. Dongarra
Publisher: SIAM
Total Pages: 353
Release: 1998-01-01
Genre: Computers
ISBN: 0898714281

Download Numerical Linear Algebra on High-Performance Computers Book in PDF, ePub and Kindle

Provides a rapid introduction to the world of vector and parallel processing for these linear algebra applications.


Parallel Complexity of Linear System Solution

Parallel Complexity of Linear System Solution
Author: Bruno Codenotti
Publisher: World Scientific
Total Pages: 234
Release: 1991
Genre: Computers
ISBN: 9789810205034

Download Parallel Complexity of Linear System Solution Book in PDF, ePub and Kindle

This book presents the most important parallel algorithms for the solution of linear systems. Despite the evolution and significance of the field of parallel solution of linear systems, no book is completely dedicated to the subject. People interested in the themes covered by this book belong to two different groups: numerical linear algebra and theoretical computer science, and this is the first effort to produce a useful tool for both. The book is organized as follows: after introducing the general features of parallel algorithms and the most important models of parallel computation, the authors analyze the complexity of solving linear systems in the circuit, PRAM, distributed, and VLSI models. The approach covers both the general case (i.e. dense linear systems without structure) and many important special cases (i.e. banded, sparse, Toeplitz, circulant linear systems).


The Less Is More Linear Algebra of Vector Spaces and Matrices

The Less Is More Linear Algebra of Vector Spaces and Matrices
Author: Daniela Calvetti
Publisher: SIAM
Total Pages: 181
Release: 2022-11-30
Genre: Mathematics
ISBN: 1611977401

Download The Less Is More Linear Algebra of Vector Spaces and Matrices Book in PDF, ePub and Kindle

Designed for a proof-based course on linear algebra, this rigorous and concise textbook intentionally introduces vector spaces, inner products, and vector and matrix norms before Gaussian elimination and eigenvalues so students can quickly discover the singular value decomposition (SVD)—arguably the most enlightening and useful of all matrix factorizations. Gaussian elimination is then introduced after the SVD and the four fundamental subspaces and is presented in the context of vector spaces rather than as a computational recipe. This allows the authors to use linear independence, spanning sets and bases, and the four fundamental subspaces to explain and exploit Gaussian elimination and the LU factorization, as well as the solution of overdetermined linear systems in the least squares sense and eigenvalues and eigenvectors. This unique textbook also includes examples and problems focused on concepts rather than the mechanics of linear algebra. The problems at the end of each chapter that and in an associated website encourage readers to explore how to use the notions introduced in the chapter in a variety of ways. Additional problems, quizzes, and exams will be posted on an accompanying website and updated regularly. The Less Is More Linear Algebra of Vector Spaces and Matrices is for students and researchers interested in learning linear algebra who have the mathematical maturity to appreciate abstract concepts that generalize intuitive ideas. The early introduction of the SVD makes the book particularly useful for those interested in using linear algebra in applications such as scientific computing and data science. It is appropriate for a first proof-based course in linear algebra.


Linear Systems Theory, Second Edition

Linear Systems Theory, Second Edition
Author: Ferenc Szidarovszky
Publisher: CRC Press
Total Pages: 530
Release: 1997-11-25
Genre: Technology & Engineering
ISBN: 9780849316876

Download Linear Systems Theory, Second Edition Book in PDF, ePub and Kindle

This second edition comprehensively presents important tools of linear systems theory, including differential and difference equations, Laplace and Z transforms, and more. Linear Systems Theory discusses: Nonlinear and linear systems in the state space form and through the transfer function method Stability, including marginal stability, asymptotical stability, global asymptotical stability, uniform stability, uniform exponential stability, and BIBO stability Controllability Observability Canonical forms System realizations and minimal realizations, including state space approach and transfer function realizations System design Kalman filters Nonnegative systems Adaptive control Neural networks The book focuses mainly on applications in electrical engineering, but it provides examples for most branches of engineering, economics, and social sciences. What's New in the Second Edition? Case studies drawn mainly from electrical and mechanical engineering applications, replacing many of the longer case studies Expanded explanations of both linear and nonlinear systems as well as new problem sets at the end of each chapter Illustrative examples in all the chapters An introduction and analysis of new stability concepts An expanded chapter on neural networks, analyzing advances that have occurred in that field since the first edition Although more mainstream than its predecessor, this revision maintains the rigorous mathematical approach of the first edition, providing fast, efficient development of the material. Linear Systems Theory enables its reader to develop his or her capabilities for modeling dynamic phenomena, examining their properties, and applying them to real-life situations.


Computer Solution of Large Linear Systems

Computer Solution of Large Linear Systems
Author: Gerard Meurant
Publisher: Elsevier
Total Pages: 777
Release: 1999-06-16
Genre: Mathematics
ISBN: 0080529518

Download Computer Solution of Large Linear Systems Book in PDF, ePub and Kindle

This book deals with numerical methods for solving large sparse linear systems of equations, particularly those arising from the discretization of partial differential equations. It covers both direct and iterative methods. Direct methods which are considered are variants of Gaussian elimination and fast solvers for separable partial differential equations in rectangular domains. The book reviews the classical iterative methods like Jacobi, Gauss-Seidel and alternating directions algorithms. A particular emphasis is put on the conjugate gradient as well as conjugate gradient -like methods for non symmetric problems. Most efficient preconditioners used to speed up convergence are studied. A chapter is devoted to the multigrid method and the book ends with domain decomposition algorithms that are well suited for solving linear systems on parallel computers.


Finite Dimensional Linear Systems

Finite Dimensional Linear Systems
Author: Roger W. Brockett
Publisher: SIAM
Total Pages: 260
Release: 2015-05-26
Genre: Mathematics
ISBN: 1611973880

Download Finite Dimensional Linear Systems Book in PDF, ePub and Kindle

Originally published in 1970, Finite Dimensional Linear Systems is a classic textbook that provides a solid foundation for learning about dynamical systems and encourages students to develop a reliable intuition for problem solving. The theory of linear systems has been the bedrock of control theory for 50 years and has served as the springboard for many significant developments, all the while remaining impervious to change. Since linearity lies at the heart of much of the mathematical analysis used in applications, a firm grounding in its central ideas is essential. This book touches upon many of the standard topics in applied mathematics, develops the theory of linear systems in a systematic way, making as much use as possible of vector ideas, and contains a number of nontrivial examples and many exercises.