Interferometry And Precision Measurements With Bose Condensed Atoms PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Interferometry And Precision Measurements With Bose Condensed Atoms PDF full book. Access full book title Interferometry And Precision Measurements With Bose Condensed Atoms.

Interferometry and Precision Measurements with Bose-condensed Atoms

Interferometry and Precision Measurements with Bose-condensed Atoms
Author: Daniel Doering
Publisher:
Total Pages: 280
Release: 2011
Genre: Atoms
ISBN:

Download Interferometry and Precision Measurements with Bose-condensed Atoms Book in PDF, ePub and Kindle

Bose-Einstein condensates are coherent matter waves, produced by cooling gaseous atomic clouds to ultra-low temperatures. For applications in atom interferometry and precision measurements, Bose-condensed sources present an intriguing alternative to thermal atoms. Although the current sensitivity achievable with interferometers using coherent atoms is not comparable to thermal beam machines (mainly due to the lower flux), there are promising ways to utilise the potential of Bose-condensed sources for atom interferometry. Among those is the low momentum width of Bose-Einstein condensates, which can generally be well controlled and is advantageous for increased interferometric sensitivities by implementing large momentum transfer beam splitters. As part of this thesis, experimental and theoretical investigations are presented to investigate the potential of Bose-Einstein condensates for such applications. We shall present the quantum projection noise limited performance of a Ramsey interferometer operating on the atomic clock transition of a freely expanding cloud of Bose-condensed rubidium 87 atoms. The results include Ramsey fringes of high visibility, not measurably affected by atomic interaction-induced dephasing effects. The achievement and detection of the quantum projection noise limit rely critically on the precision and accuracy of both the imaging setup and the coupling scheme in the interferometric beam splitters. The stabilisation of the beam splitters via an optical Sagnac interferometer is the basis for the quantum projection noise limited performance of the interferometer presented. For an increase of bandwidth and flux in atom interferometric measurements, it is advantageous to use a continuous atomic beam. A truly continuous coherent atom source has not been realised to date, and we present results on a pumping mechanism in this thesis, as a decisive step towards a continuous atom laser. By the investigation of different momentum resonances, we find that the pumping scheme relies on a Raman superradiance-like process. Finally, the thesis demonstrates two interaction measurements in rubidium. The strong mean field interactions due to the high densities in Bose-Einstein condensates are used to probe the potential of a rubidium 87 condensate with an atom laser. The measurement allows a determination of the scattering length between the two atomic states involved. In addition to this two-body scattering scheme, we present a measurement of three-body loss coefficients, extracted from loss curves in rubidium 85 Bose-Einstein condensates. The measurement provides new upper bounds on the three-body loss coefficients at the scattering lengths considered.


Precision Interferometry with Bose-Einstein Condensates

Precision Interferometry with Bose-Einstein Condensates
Author: Alan O. Jamison
Publisher:
Total Pages: 191
Release: 2014
Genre:
ISBN:

Download Precision Interferometry with Bose-Einstein Condensates Book in PDF, ePub and Kindle

This dissertation describes the creation of the first matter-wave interferometer using ytterbium (Yb) atoms. Most of the experiments focus on a contrast interferometer geometry with a Bose-Einstein condensate (BEC) as source. The recoil frequency of the 174-Yb atom is measured with this interferometer. The recoil frequency of an atom is part of a set of precision measurements that together give a value for the fine structure constant. The experimental results of this dissertation lay the groundwork for a future sub part-per-billion (ppb) precision measurement of the Yb recoil frequency. The contrast interferometry technique is extended to substantially longer times scales than those achieved in previous experiments. A measurement at the ~10 parts-per-million level is made. Systematic effects and statistical scaling are studied and found to be compatible with the desired sub-ppb precision for a future measurement. Such a measurement requires a detailed theoretical study of possible systematic shifts to the measured value. A substantial portion of this dissertation consists of this analysis, carried out in sufficient generality as to guide future sub-ppb level measurements. In addition to a large number of possible systematic shifts due to well-understood physics, two more complex effects are identified and studied: Diffraction phases and atom-atom interactions.


Interferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential

Interferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential
Author: Tarik Berrada
Publisher: Springer
Total Pages: 244
Release: 2015-12-17
Genre: Science
ISBN: 3319272330

Download Interferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential Book in PDF, ePub and Kindle

This thesis demonstrates a full Mach–Zehnder interferometer with interacting Bose–Einstein condensates confined on an atom chip. It relies on the coherent manipulation of atoms trapped in a magnetic double-well potential, for which the author developed a novel type of beam splitter. Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices, both for technological applications and fundamental tests. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Particle interactions in the Bose–Einstein condensate lead to a nonlinearity, absent in photon optics. This is exploited to generate a non-classical state with reduced atom-number fluctuations inside the interferometer. This state is then used to study the interaction-induced dephasing of the quantum superposition. The resulting coherence times are found to be a factor of three longer than expected for coherent states, highlighting the potential of entanglement as a resource for quantum-enhanced metrology.


High Contrast Measurements with a Bose-Einstein Condensate Atom Interferometer

High Contrast Measurements with a Bose-Einstein Condensate Atom Interferometer
Author: Billy Ian Robertson
Publisher:
Total Pages: 0
Release: 2016
Genre:
ISBN:

Download High Contrast Measurements with a Bose-Einstein Condensate Atom Interferometer Book in PDF, ePub and Kindle

Atom interferometry is a next-generation technique of precision measurement that can vastly outperform its optical analogue. These devices utilise the wave nature of atoms to make interferometric measurements of, for example, gravitational and magnetic fields, inertial effects, and the fine-structure constant. The main focus of this thesis is the creation of a general purpose atom interferometer in free space.We create a Bose-Einstein condensate of ~105 87Rb atoms in a crossed-optical dipole trap. The atomic wave function is coherently manipulated using highly tuned pulses comprising off-resonant light that form our atom-optical elements. These atom optics are analogous to the beam splitters and mirrors in an optical interferometer. By controlling the timing and amplitude of the pulses we demonstrate the ability to excite specific momentum states with high efficiency. The tuned atom optics allows for the construction of an atom interferometer in free space. From this we can measure the recoil velocity of an 87Rb atom and calculate the value of the fine structure constant. We also demonstrate the measurement of magnetic field gradients using atom interferometry. A second method of data readout is also demonstrated, known as contrast interferometry.This increases the rate at which information is obtained and decreases the measurement duration from a few hours to a few minutes.Within the vacuum chamber we also have a copper ring which form the basis of an AC coupled ring trap for atoms. The long term goal is to use this as a waveguide for atom interferometry and, whilst not the main focus of this thesis, we present some proof-of-principle type data demonstrating the ring trap. In addition we show the first Kapitza-Dirac splitting of a BEC within the waveguide which forms the first part of a guided atom interferometer.


The Role of Interactions in Atom Interferometry with Bose-Condensed Atoms

The Role of Interactions in Atom Interferometry with Bose-Condensed Atoms
Author: Paul Anthony Altin
Publisher:
Total Pages: 342
Release: 2012
Genre:
ISBN:

Download The Role of Interactions in Atom Interferometry with Bose-Condensed Atoms Book in PDF, ePub and Kindle

In recent years, atom interferometry has become established as an indispensable tool in both fundamental and applied physics. With present state-of-the-art devices based on thermal atoms reaching limits imposed by the momentum spread of the initial atomic wavepacket, it seems natural to ask whether colder sources such as Bose-Einstein condensates may prove beneficial in advancing the precision of interferometric measurements. The thesis at hand aims to inform this question, specifically by examining the role played by atomic interactions in interferometers based on Bose-condensed atoms. Interactions can have both advantageous and deleterious consequences in the context of atom interferometry. They provide a means to control the momentum width of the condensate, and facilitate the generation of nonclassical squeezed states which may enhance the phase sensitivity beyond the shot noise limit. Conversely, the condensate self-interaction causes mean-field shifts, multimode excitations and phase diffusion which can erode both the precision and the accuracy of an interferometric measurement. The question of when and in which systems the detrimental effects of interactions outweigh the advantages of using Bose-Einstein condensates is an important one, and warrants investigation. This thesis presents experimental studies into the role of interactions in both internal- and external-state atom interferometers. As a foundation for these investigations, we describe the design and construction of an apparatus for creating Bose-Einstein condensates of the two stable rubidium isotopes in an optical trap. By sympathetic cooling with a rubidium-87 reservoir, we are able to produce condensates of rubidium-85 in which the interactions may be adjusted by means of a magnetic Feshbach resonance. The tunability afforded by the Feshbach resonance is used to study inelastic losses in ultracold rubidium-85 clouds, as well as the effect of interactions on condensate stability and on the ground state of dual-species mixtures. In particular, we offer new experimental data on the dynamics of collapsing condensates with attractive interactions, over which some controversy has existed since the first experiments more than a decade ago. Good agreement is found between the measured collapse times and a simple mean-field model. Proceeding to interferometry, we present results from Ramsey interferometers operating on the clock transition of rubidium-87 Bose-Einstein condensates. In free-space operation with Raman beamsplitters, we demonstrate projection-noise-limited performance, an important prerequisite for the realisation of squeezing-enhanced sensitivity. Using large condensates of up to 106 atoms and microwave coupling, we study the effect of interactions on the Ramsey fringe contrast. The dominant source of decoherence is found to be spatial dynamics driven by the difference in interparticle interaction strengths, which are analysed using the spin-echo technique and numerical simulations of the Gross-Pitaevskii equation. Finally, we turn our attention to external-state interferometry, implementing a Mach-Zehnder gravimeter using Bragg transitions in a freely falling rubidium-87 condensate. Large-momentum-transfer beamsplitters composed of higher-order Bragg diffraction and Bloch oscillations are used to increase the accumulated phase and thus the sensitivity of the interferometer. The role of interactions in this system is examined, and we canvass methods for achieving further increases in sensitivity. -- provided by Candidate.


Atom Interferometric Experiments with Bose-Einstein Condensates in Microgravity

Atom Interferometric Experiments with Bose-Einstein Condensates in Microgravity
Author: Julia Pahl
Publisher:
Total Pages: 0
Release: 2023*
Genre:
ISBN:

Download Atom Interferometric Experiments with Bose-Einstein Condensates in Microgravity Book in PDF, ePub and Kindle

Englische Version: Light-pulse atom interferometry (AI) is an important tool for high precision measurements in the fields of inertial sensing or fundamental physics. Especially in combination with ultra-cold atomic sources and operation in microgravity, high sensitivities are expected that are necessary for the search for violations of the weak equivalence principle. QUANTUS-2 is a mobile atom interferometer operating at the ZARM drop tower in Bremen. With its high-flux, atom chip-based atomic rubidium source, it serves as a pathfinder for future space missions, examining key technologies like the generation of Bose-Einstein condensates (BECs), implementation of delta-kick collimation or application of various AI geometries. In this thesis, a potassium diode laser system has been built to complete the preordained functionality of dual-species operation. Based on the design of the rubidium laser system with micro-integrated laser diode modules and compact electronics, it successfully passed the qualification tests. In a proof of principle measurement, a potassium magneto-optical trap could be generated to prove the system's capability of trapping atoms. With rubidium, open Ramsey type interferometers and Mach-Zehnder interferometers (MZIs) were examined on ground and in over 155 drops in microgravity. The combination of variably delta-kicked collimated BECs and AI in microgravity revealed a new technique to determine the magnetic lens duration for optimal collimation. Asymmetric MZIs with interferometry times of 2T > 1s have successfully been demonstrated. Gravimetric examinations on ground with MZIs and by an additional levitation technique have been performed to determine the local gravitational acceleration g. The examined key technologies are fundamental necessities that have to be considered to pave the way for future space missions.


Theoretical Study of Bose-Einstein Condensate-Based Atom Michelson Interferometers

Theoretical Study of Bose-Einstein Condensate-Based Atom Michelson Interferometers
Author: Rudra Prasad Kafle
Publisher:
Total Pages: 490
Release: 2012
Genre:
ISBN:

Download Theoretical Study of Bose-Einstein Condensate-Based Atom Michelson Interferometers Book in PDF, ePub and Kindle

Abstract: Atom interferometers and gyroscopes are highly sensitive atom-optical devices which are capable to measure inertial, gravitational, electric, and magnetic fields and to sense rotations. Theoretically, the signal-to-noise ratio of atomic gyroscopes is about a hundred billion times more than that of their optical counterparts for the same particle flux and the enclosed area. Ultra cold atoms from a Bose-Einstein condensate (BEC) can easily be controlled and coherently manipulated on small chips by laser pulses. Atom-optical devices will therefore play a significant role in fundamental research, precision measurements, and navigation systems. In BEC-based atom interferometers, a BEC in a trap is split by using laser pulses, the split clouds are allowed to evolve, they are reflected, and then recombined by laser pulses to observe interference. The split clouds accumulate spatial phase because of the trap and the nonlinearity caused by atom-atom interactions. A velocity mismatch due to reflection laser pulses also introduces a phase gradient across each cloud. These factors contribute to spatial relative phase between the clouds at recombination, causing the loss of contrast of the interference fringes. The main objective of this dissertation is to study the dynamics of a split condensate in atom Michelson interferometers, investigate the effect of trap frequencies, nonlinearity, and the velocity mismatch on the contrast, and to obtain the best theoretical limit of performance in terms of the experimental parameters: trap frequencies, number of atoms, and the velocity imparted to the clouds by the splitting laser pulses.


Atomic Physics: Precise Measurements and Ultracold Matter

Atomic Physics: Precise Measurements and Ultracold Matter
Author: Massimo Inguscio
Publisher: OUP Oxford
Total Pages: 349
Release: 2013-09-19
Genre: Science
ISBN: 0191509639

Download Atomic Physics: Precise Measurements and Ultracold Matter Book in PDF, ePub and Kindle

This book illustrates the history of Atomic Physics and shows how its most recent advances allow the possibility of performing precise measurements and achieving an accurate control on the atomic state. Written in an introductory style, this book is addressed to advanced undergraduate and graduate students, as well as to more experienced researchers who need to remain up-to-date with the most recent advances. The book focuses on experimental investigations, illustrating milestone experiments and key experimental techniques, and discusses the results and the challenges of contemporary research. Emphasis is put on the investigations of precision physics: from the determination of fundamental constants of Nature to tests of General Relativity and Quantum Electrodynamics; from the realization of ultra-stable atomic clocks to the precise simulation of condensed matter theories with ultracold gases. The book discusses these topics while tracing the evolution of experimental Atomic Physics from traditional laser spectroscopy to the revolution introduced by laser cooling, which allows the manipulation of atoms at a billionth of a degree above absolute zero and reveals new frontiers of precision in atomic spectroscopy.


High Contrast Interferometry and Finite Temperature Coherence of Bose-Einstein Condensates

High Contrast Interferometry and Finite Temperature Coherence of Bose-Einstein Condensates
Author: Christopher Hugh Carson
Publisher:
Total Pages: 0
Release: 2015
Genre:
ISBN:

Download High Contrast Interferometry and Finite Temperature Coherence of Bose-Einstein Condensates Book in PDF, ePub and Kindle

This thesis outlines the main experimental results of a Bose-Einstein condensate(BEC) interferometer and the finite temperature coherence of elongated BECs. Cold atom and BEC-based interferometers take advantage of the wave nature of atoms as they are cooled and can be used for precision measurements of fundamental physics, fundamental constants, rotations and gravitational gradients. The coherence properties of atomic matter-waves are of great interest, in particular phase coherence, which has played an important role in fundamental research involving BEC interferometry. When subject to high cloud aspect ratios, BECs become elongated and exhibited phase fluctuations, which can have a dramatic affect on the performance of matter-wave interferometers. A brief overview of the history and basic theory of Bose-Einstein condensates is presented as well as introducing the various studies and applications in metrology involving BECs. The theory of the techniques used to create a BEC, such as laser cooling, trapping and evaporation, are discussed along with the dynamics of BECs, matter-wave interference and phase fluctuations. The experimental chapters describe the various concepts, techniques and mechanisms used to experimentally observe matter-wave interference fringes. The interference fringes are a result of realising two BECs from a double-well potential, which is created using a combination of magnetic and optical potentials, and allowing them to expand and overlap. The main interferometry results are then discussed, this includes the observation of single-shot interference fringes with contrast ≥95%, which has a strong dependence on the detuning of the imaging beam. Also, a strong dependence on fringe contrast with the focal location of the camera is observed, which can now be clearly attributed to the Talbot effect. This is the first reported observation of the spatial Talbot effect of light interacting with period BEC fringes, revealing the drastic effect it can have on the interference signal. The major results regarding phase fluctuations in elongated condensates are presented. These include the existence of large regular period phase fluctuations, which should normally be of random phase and size. By dynamically changing the aspect ratio of the condensate during an experimental sequence, a controlled generation and removal of phase fluctuations in a Bose-Einstein condensate is observed, indicating a phase revival. The thesis concludes by considering potential improvements and future experiments, which could be used towards the experimental implementation of a BEC interferometer.


From Quantum to Cosmos

From Quantum to Cosmos
Author: Slava G. Turyshev
Publisher: World Scientific
Total Pages: 764
Release: 2009
Genre: Science
ISBN: 9814261211

Download From Quantum to Cosmos Book in PDF, ePub and Kindle

Space-based laboratory research in fundamental physics is an emerging research discipline that offers great discovery potential and at the same time could drive the development of technological advances which are likely to be important to scientists and technologists in many other different research fields. The articles in this review volume have been contributed by participants of the international workshop "From Quantum to Cosmos : Fundamental Physics Research in Space" held at the Airlie Center in Warrenton, Virginia, USA, on May 21-24, 2006. This unique volume discusses the advances in our understanding of fundamental physics that are anticipated in the near future, and evaluates the discovery potential of a number of recently proposed space-based gravitational experiments. Specific research areas covered include various tests of general relativity and alternative theories, search of physics beyond the Standard Model, investigations of possible violations of the equivalence principle, search for new hypothetical long- and short-range forces, variations of fundamental constants, tests of Lorentz invariance and attempts at unification of the fundamental interactions. The book also encompasses experiments aimed at the discovery of novel phenomena, including dark matter candidates, and studies of dark energy.